# Convert a Number with a Repeating Fractional Part

 From: .

## Examples

### Result

10

13

75

2

(1101.1100000111)2

2

1101

1100000111

10

(13.75)10

16

A345

FF9C

2

(1010001101000101.1111111110011100)2

16

A345

FF9C

8

(121505.7771637747177634)8

7

135

136

3

(2210.02)3

18

A9

{17}2

8

(275.750162102446653771521504)8

16

0

3D

12

(0.2A5446265B1A0347A)12

7

0

6533213315

11

(a lot of digits—try it!)

### The "Initial Base" Entry

Enter the initial base of the number (e.g., 2 for binary, 8 for octal, 10 for decimal, 16 for hexadecimal, etc.).

### The "Number" Entry

The table below describes the notation for entering the number's digits. Note that the digit values in this table are shown in base 10. If a digit value is from 10 to 15, you can use the standard hexidecimal symbols A through F. For a digit value larger than 15, you must enter its base 10 value enclosed in braces. The braces notation can actually be used for any digit value, and we will use it for all digts in the results when the new base is greater than 16.

0

1

2

3

4

5

6

7

8

9

A or a

B or b

C or c

D or d

E or e

F or f

## value is >15

{ base 10 digit value }

The following table illustrates the digit notation by showing how you could enter the base 10 number 447.63 in mulitple bases.

## Digit Notation Examples

10

447

63

2

110111111

1010001011

16

1BF

A2E8B

23

{19}{10}

{14}

### The "New Base" Entry

Enter the new base to which you want the number converted (e.g., 2 for binary, 8 for octal, 10 for decimal, 16 for hexadecimal, etc.).