Convert a Number with a Mixed Fractional Part

From:

Initial Base

Integral Part

Radix Point

Non-Repeating Fractional Part

Repeating Fractional Part

Number

.

To:

New Base

Result:

( Number in New Base )

 

Solutions manuals and the Numerari scientific calculator from KnowledgeDoor Learn more about our solutions manuals Learn more about Numerari

Help Information

Examples

Initial Base

Integral Part

Non-Repeating Fractional Part

Repeating Fractional Part

New Base

Result

10

12

8

3

2

(1100.110)2

2

1100

1

10

10

(12.83)10

16

A345

FF

9C

2

(1010001101000101.1111111110011100)2

16

A345

FF

9C

8

(121505.77716234471)8

7

23

4

6

3

(122.201021)3

24

9{19}

{17}

{21}

3

(22201.202011002221)3

16

0

13

3D

12

(0.0A9A46265B1A0347AA54)12

10

23

1

6

6

(35.1)6

7

0

16

6533213316

11

(a lot of digits—try it!)

The "Initial Base" Entry

Enter the initial base of the number (e.g., 2 for binary, 8 for octal, 10 for decimal, 16 for hexadecimal, etc.).

The "Number" Entry

The table below describes the notation for entering the number's digits. Note that the digit values in this table are shown in base 10. If a digit value is from 10 to 15, you can use the standard hexidecimal symbols A through F. For a digit value larger than 15, you must enter its base 10 value enclosed in braces. The braces notation can actually be used for any digit value, and we will use it for all digts in the results when the new base is greater than 16.

Digit Value

Digit Notation

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

A or a

11

B or b

12

C or c

13

D or d

14

E or e

15

F or f

value is >15

{ base 10 digit value }

The following table illustrates the digit notation by showing how you could enter the base 10 number 362.727 in mulitple bases.

Digit Notation Examples

Initial Base

Integral Part

Non-Repeating Fractional Part

Repeating Fractional Part

10

362

72

7

2

101101010

10

111010010011

16

16A

B

A4F

25

{14}{12}

{18}

{4}{21}{13}

The "New Base" Entry

Enter the new base to which you want the number converted (e.g., 2 for binary, 8 for octal, 10 for decimal, 16 for hexadecimal, etc.).