Xenon

Xenon Navigation

Other Elements

By Name

By Symbol

By Number

Solutions manuals and the Numerari scientific calculator from KnowledgeDoor Learn more about our solutions
manuals Learn more about Numerari

Quantity

Xenon Quick Reference

Click button to see citations

Notes

Symbol

Xe

Atomic Number

54

Atomic Weight

Rounded

131.3

for regular calculations

Standard

131.293 ± 0.006

for precise calculations

Oxidation States

8

less common

6

less common with disagreement

4

less common with disagreement

3

less common

2

less common with disagreement

0

more common with disagreement

Pauling Electronegativity

2.60

Electron Configuration

Orbital Occupancy

[Kr] 4d10 5s2 5p6

[Kr] represents the closed-shell electron configuration of krypton

Orbital Filling Order

[Kr] 5s2 4d10 5p6

[Kr] represents the closed-shell electron configuration of krypton

Term Symbol

1S0

see expanded configuration ...

Ionization Energies

I   (1)

12.12984 eV    

II  (2)

20.9750 eV     

III (3)

31.05 ± 0.04 eV

IV  (4)

40.9 ± 0.4 eV  

see all 54 energies ...

Electron Affinity

<0 eV

<0 cm-1

Density

gas

400 K, 1 atm

4.01 g/L 

300.000 K

1 atm

5.36 g/L 

1 bar

5.29 g/L 

25 °C, 1 atm

5.366 g/L

285.000 K, 1 atm

5.65 g/L 

275.000 K, 1 atm

5.86 g/L 

270.000 K, 1 atm

5.97 g/L 

200.000 K, 1 atm

8.14 g/L 

see all 52 densities ...

Molar Volume

gas, 273.15 K, 1 atm

22.4128 L/mol

solid, 0 K, 0 atm

34.71 cm3/mol

Melting Point

1 atm

161.36 K

Boiling Point

1 atm

165.06 K

Thermal Conductivity

gas

400 K, 1 atm

0.00745 W/(m K)

300 K, 1 atm

0.00569 W/(m K)

290 K, 1 atm

0.00550 W/(m K)

280 K, 1 atm

0.00532 W/(m K)

270 K, 1 atm

0.00514 W/(m K)

200 K, 1 atm

0.00388 W/(m K)

see all 51 conductivities ...

Pyykkö Covalent Radius

single bond

131 pm

double bond

135 pm

triple bond

122 pm

Enthalpy of Fusion

1 atm

3.1 kJ/mol

Enthalpy of Vaporization

1 atm

12.65 kJ/mol

Quantity

Xenon Atomic Structure

Notes

Ionization Energies

I   (1)

12.12984 eV    

II  (2)

20.9750 eV     

III (3)

31.05 ± 0.04 eV

IV  (4)

40.9 ± 0.4 eV  

see all 54 energies ...

Electron Affinity

<0 eV

<0 cm-1

Electron Binding Energies

K    (1s)

34561 eV  

LI   (2s)

 5453 eV  

LII  (2p1/2)

 5107 eV  

LIII (2p3/2)

 4786 eV  

see all 14 energies ...

Electron Configuration

Orbital Occupancy

[Kr] 4d10 5s2 5p6

[Kr] represents the closed-shell electron configuration of krypton

Orbital Filling Order

[Kr] 5s2 4d10 5p6

[Kr] represents the closed-shell electron configuration of krypton

Term Symbol

1S0

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

52.9215

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

52.9215

Zeff = ζ × n

2s

Orbital Exponent

19.9015

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

39.8030

Zeff = ζ × n

see all 11 effective nuclear charges ...

Screening Percentage

78.2%

Fluorescence Yields

ωK

0.888

ωL1

0.046

ωL2

0.083

ωL3

0.085

Coster-Kronig Yields

F12

0.19 

F13

0.25 

F23

0.159

Quantity

Xenon Physical Properties

Notes

Density

gas

400 K, 1 atm

4.01 g/L 

300.000 K

1 atm

5.36 g/L 

1 bar

5.29 g/L 

25 °C, 1 atm

5.366 g/L

285.000 K, 1 atm

5.65 g/L 

275.000 K, 1 atm

5.86 g/L 

270.000 K, 1 atm

5.97 g/L 

200.000 K, 1 atm

8.14 g/L 

see all 52 densities ...

Molar Mass

Rounded

131.3 g/mol

for regular calculations

Standard

131.293 ± 0.006 g/mol

for precise calculations

Molar Volume

gas, 273.15 K, 1 atm

22.4128 L/mol

solid, 0 K, 0 atm

34.71 cm3/mol

Physical Form

colorless gas

Speed of Sound

gas

400.00 K, 1 atm

205.37 m/s

300.000 K

1 atm

177.58 m/s

1 bar

177.59 m/s

285.000 K, 1 atm

173.00 m/s

275.000 K, 1 atm

169.88 m/s

270.000 K, 1 atm

168.30 m/s

200.000 K, 1 atm

143.97 m/s

liquid, 165.000 K, 1 atm

637.85 m/s

see all 54 speeds of sound ...

Dielectric Constant

161.35 K

1.88

Gram Atomic Volume

43 cm3

Quantity

Xenon Atomic Interaction

Notes

Oxidation States

8

less common

6

less common with disagreement

4

less common with disagreement

3

less common

2

less common with disagreement

0

more common with disagreement

Pauling Electronegativity

2.60

Mulliken-Jaffe Electronegativity

hybridsp3

3.01

hybrid12.5% s

2.73

orbitalp

2.44

Sanderson Electronegativity

2.34

Allred-Rochow Electronegativity

2.40

Configuration Energy

electron volt units

15.27 eV

Pauling units

 2.582  

Allen Electronegativity

2.582

Ghosh-Gupta Electronegativity

5.8121 eV

Nagle Electronegativity

2.45

Cohesive Energy

per mole

15.9 kJ/mol  

per atom

 0.16 eV/atom

Quantity

Xenon Thermodynamics

Notes

Melting Point

1 atm

161.36 K

Boiling Point

1 atm

165.06 K

Thermal Conductivity

gas

400 K, 1 atm

0.00745 W/(m K)

300 K, 1 atm

0.00569 W/(m K)

290 K, 1 atm

0.00550 W/(m K)

280 K, 1 atm

0.00532 W/(m K)

270 K, 1 atm

0.00514 W/(m K)

200 K, 1 atm

0.00388 W/(m K)

see all 51 conductivities ...

Triple Point

temperature

161.405 K

ITS-90 first-quality, secondary reference point

pressure

81.61973 ± 0.02666 kPa

Critical Point

temperature

289.765 ± 0.025 K

estimated

pressure

5.8405 ± 0.0005 MPa

Vapor Pressure

-108.4 °C

100 kPa

-136.6 °C

10 kPa

-155.8 °C

1 kPa

see all 20 pressures ...

Enthalpy of Fusion

1 atm

3.1 kJ/mol

Enthalpy of Vaporization

1 atm

12.65 kJ/mol

Isobaric Molar Heat Capacity

298.15 K, 1 bar

20.786 J/(mol K)

Isobaric Specific Heat Capacity

gas

400.000 K, 1 atm

0.15904 J/(g K)

300.000 K

1 atm

0.16000 J/(g K)

1 bar

0.15998 J/(g K)

285.000 K, 1 atm

0.16029 J/(g K)

275.000 K, 1 atm

0.16054 J/(g K)

270.000 K, 1 atm

0.16068 J/(g K)

200.000 K, 1 atm

0.16524 J/(g K)

see all 48 capacities ...

Isochoric Specific Heat Capacity

gas

400.000 K, 1 atm

0.0951 J/(g K)

300.000 K

1 atm

0.0954 J/(g K)

1 bar

0.0954 J/(g K)

285.000 K, 1 atm

0.0955 J/(g K)

275.000 K, 1 atm

0.0956 J/(g K)

270.000 K, 1 atm

0.0956 J/(g K)

200.000 K, 1 atm

0.0976 J/(g K)

see all 54 capacities ...

Debye Temperature

Low Temperature Limit ( 0 K )

64.0 K

Quantity

Xenon Identification

Notes

CAS Number

7440-63-3

DOT Number

2036

compressed

2036

refrigerated liquid (cryogenic liquid)

2591

ICSC Number

0609

RTECS Number

ZE1280000

UN Number

2036

Quantity

Xenon Atomic Size

Notes

Orbital Radius

98.6 pm

Pyykkö Covalent Radius

single bond

131 pm

double bond

135 pm

triple bond

122 pm

Cordero Covalent Radius

140 pm

Shannon-Prewitt Crystal Radius

ion charge: +8

coordination number: 4

54 pm

coordination number: 6

62 pm

Shannon-Prewitt Effective Ionic Radius

ion charge: +8

coordination number: 4

40 pm

coordination number: 6

48 pm

Pauling Univalent Radius

ion charge: 0

190 pm

Bondi Van Der Waals Radius

216 pm

Quantity

Xenon Crystal Structure

Notes

Nearest Neighbor Distance

4 K, 1 atm

434 pm

Atomic Concentration

4 K, 1 atm

1.64×1022 cm-3

Quantity

Xenon History

Notes

Discovery

date of discovery

1898

discoverer

William Ramsay

birth

October 2, 1852

death

July 23, 1916

discoverer

Morris William Travers

birth

January 24, 1872

death

1961

location of discovery

London, England

Origin of Element Name

origin

xenos

origin description

property—Greek for strange or stranger

Origin of Element Symbol

symbol: Xe

origin

xenon

origin description

element name

Quantity

Xenon Abundances

Notes

Earth's Crust

3×10-5 ppm

Ocean Water

5×10-6 ppm

Solar System

4.7

number of atoms for every 106 atoms of silicon

Sun

2.16 ± 0.09

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Quantity

Xenon Nomenclature

Notes

Element Names in Other Languages

French

xénon

German

Xenon

Italian

xeno

Spanish

xenón

Portuguese

xénon

Anions or Anionic Substituent Groups

xenonide

Cations or Cationic Substituent Groups

xenon

Ligands

xenonido

Heteroatomic Anion

xenonate

'a' Term—Substitutive Nomenclature

xenona

'y' Term—Chains and Rings Nomenclature

xenony

References    (Click the button next to a value above to see complete citation information for that entry)

Albright, Thomas A., and Jeremy K. Burdett. Problems in Molecular Orbital Theory. New York: Oxford University Press, 1992.

Allen, Leland C. "Electronegativity Is the Average One-Electron Energy of the Valence-Shell Electrons in Ground-State Free Atoms." Journal of the American Chemical Society, volume 111, number 25, 1989, pp. 9003–9014. doi:10.1021/ja00207a003

Allen, Leland C., and James E. Huheey. "The Definition of Electronegativity and the Chemistry of the Noble Gases." Journal of Inorganic and Nuclear Chemistry, volume 42, number 10, 1980, pp. 1523–1524. doi:10.1016/0022-1902(80)80132-1

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Andersen, T., H. K. Haugen, and H. Hotop. "Binding Energies in Atomic Negative Ions: III." Journal of Physical and Chemical Reference Data, volume 28, number 6, 1999, pp. 1511–1533.

Bedford, R. E., G. Bonnier, H. Maas, and F. Pavese. "Recommended Values of Temperature on the International Temperature Scale of 1990 for a Selected Set of Secondary Reference Points." Metrologia, volume 33, number 2, 1996, pp. 133–154. doi:10.1088/0026-1394/33/2/3

Bondi, A. "Van der Waals Volumes and Radii." The Journal of Physical Chemistry, volume 68, number 3, 1964, pp. 441–451. doi:10.1021/j100785a001

Bratsch, Steven G. "Revised Mulliken Electronegativities: I. Calculation and Conversion to Pauling Units." Journal of Chemical Education, volume 65, number 1, 1988, pp. 34–41. doi:10.1021/ed065p34

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells." Atomic Data and Nuclear Data Tables, volume 85, number 2, 2003, pp. 291–315. doi:10.1016/S0092-640X(03)00059-7

Chauvin, Remi. "Explicit Periodic Trend of van der Waals Radii." The Journal of Physical Chemistry, volume 96, number 23, 1992, pp. 9194–9197. doi:10.1021/j100202a023

Clementi, E., D. L. Raimondi, and W. P. Reinhardt. "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons." Journal of Chemical Physics, volume 47, number 4, 1967, pp. 1300–1307. doi:10.1063/1.1712084

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

Cox, P. A. The Elements: Their Origin, Abundance and Distribution. Oxford: Oxford University Press, 1989.

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Ghosh, Dulal C., and Kartick Gupta. "A New Scale Of Electronegativity Of 54 Elements Of Periodic Table Based On Polarizability Of Atoms." Journal of Theoretical and Computational Chemistry, volume 5, number 4, 2006, pp. 895–911. doi:10.1142/S0219633606002726

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Halpern, Arthur M. "From Dimer to Crystal: Calculating the Cohesive Energy of Rare Gas Solids." Journal of Chemical Education, volume 89, number 5, 2012, pp. 592–597. doi:10.1021/ed200348j

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

Ihde, Aaron J. The Development of Modern Chemistry. New York: Dover Publications, Inc., 1984.

International Labour Organization (ILO). International Chemical Safety Card for Xenon. http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc06/icsc0609.htm. Accessed on May 5, 2010.

International Labour Organization (ILO). International Chemical Safety Card for Xenon. http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc06/icsc0609.htm. Accessed on May 4, 2010.

Jensen, William B. "Why Helium Ends in “-ium”." Journal of Chemical Education, volume 81, number 7, 2004, p. 944. doi:10.1021/ed081p944

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Krause, M. O. "Atomic Radiative and Radiationless Yields for K and L Shells." Journal of Physical and Chemical Reference Data, volume 8, number 2, 1979, pp. 307–327.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Magomedov, M. N. "The Surface Energy of Cryocrystals." Technical Physics Letters, volume 31, number 12, 2005, pp. 1039–1042. doi:10.1134/1.2150892

Mann, Joseph B., Terry L. Meek, and Leland C. Allen. "Configuration Energies of the Main Group Elements." Journal of the American Chemical Society, volume 122, number 12, 2000, pp. 2780–2783. doi:10.1021/ja992866e

Marshall, James L. Discovery of the Elements: A Search for the Fundamental Principles of the Universe, 2nd edition. Boston, MA: Pearson Custom Publishing, 2002.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Xenon. http://www.cdc.gov/niosh/ipcsneng/neng0609.html. Accessed on May 4, 2010.

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Xenon. http://www.cdc.gov/niosh/ipcsneng/neng0609.html. Accessed on May 5, 2010.

National Institute for Occupational Safety and Health (NIOSH). The Registry of Toxic Effects of Chemical Substances for Xenon. http://www.cdc.gov/niosh-rtecs/ze138800.html. Accessed on May 5, 2010.

Nobel Foundation. Sir William Ramsay: The Nobel Prize in Chemistry 1904. http://nobelprize.org/nobel_prizes/chemistry/laureates/1904/ramsay-bio.html. Accessed on July 16, 2009.

Oxtoby, David W., H. P. Gillis, and Alan Campion. Principles of Modern Chemistry, 6th edition. Belmont, CA: Thomson Brooks/Cole, 2008.

Palme, H., and H. Beer. "Meteorites and the Composition of the Solar Photosphere." pp. 204–206 in Landolt–Börnstein—Group VI: Astronomy and Astrophysics. Edited by H. H. Voigt. New York: Springer–Verlag, 1993. doi:10.1007/10057790_59

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Pyykkö, Pekka, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii." Chemistry - A European Journal, volume 11, number 12, 2005, pp. 3511–3520. doi:10.1002/chem.200401299

Ringnes, Vivi. "Origin of the Names of Chemical Elements." Journal of Chemical Education, volume 66, number 9, 1989, pp. 731–738. doi:10.1021/ed066p731

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Saloman, E. B. "Energy Levels and Observed Spectral Lines of Xenon, Xe I through Xe LIV." Journal of Physical and Chemical Reference Data, volume 33, number 3, 2004, pp. 765–921. doi:10.1063/1.1649348

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Šifner, O., and J. Klomfar. "Thermodynamic Properties of Xenon from the Triple Point to 800 K with Pressures up to 350 MPa." Journal of Physical and Chemical Reference Data, volume 23, number 1, 1994, pp. 63–152.

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Soukhanov, Anne H., editor. The American Heritage Dictionary Of The English Language, 3rd edition. Boston: Houghton Mifflin Company, 1992.

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

U. S. Department of Transportation (DOT), Transport Canada (TC), Secretariat of Transport and Communications of Mexico (SCT), and Centro de Información Química para Emergencias (CIQUIME). 2008 Emergency Response Guidebook.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Wagman, Donald D., William H. Evans, Vivian B. Parker, Richard H. Schumm, Iva Halow, Sylvia M. Bailey, Kenneth L. Churney, and Ralph L. Nuttall. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 11, supplement 2, 1982, pp. 2–1 to 2–392.

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Weeks, Mary Elvira, and Henry M. Leicester. Discovery of the Elements, 7th edition. Easton, PA: Journal of Chemical Education, 1968.

Wieser, Michael E., and Tyler B. Coplen. "Atomic weights of the elements 2009 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 83, number 2, 2011, pp. 359–396. doi:10.1351/PAC-REP-10-09-14

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.