Tellurium

Tellurium Navigation

Other Elements

By Name

By Symbol

By Number

Solutions manuals and the Numerari scientific calculator from KnowledgeDoor Learn more about our solutions manuals Learn more about Numerari

Quantity

Tellurium Quick Reference

Click button to see citations

Notes

Symbol

Te

Atomic Number

52

Atomic Weight

Rounded

127.6

for regular calculations

Standard

127.60 ± 0.03

for precise calculations

Oxidation States

 6

less common with disagreement

 5

less common

 4

more common

 2

less common with disagreement

-1

less common

-2

less common with disagreement

Pauling Electronegativity

2.1

Electron Configuration

Orbital Occupancy

[Kr] 4d10 5s2 5p4

[Kr] represents the closed-shell electron configuration of krypton

Orbital Filling Order

[Kr] 5s2 4d10 5p4

[Kr] represents the closed-shell electron configuration of krypton

Term Symbol

3P2

see expanded configuration ...

Ionization Energies

I   (1)

 9.0096 eV

II  (2)

18.6 eV   

III (3)

27.96 eV  

IV  (4)

37.41 eV  

see all 7 energies ...

Electron Affinity

1.970875 ± 0.000007 eV

15896.18 ± 0.05 cm-1  

Density

liquid, 722.66 K

5.797 g/ml 

solid, 25 °C

6.240 g/cm3

Molar Volume

solid, 298 K, 1 atm

20.46 cm3/mol

Melting Point

722.66 K

Boiling Point

1 atm

1261.15 K

Thermal Conductivity

solid

300 K

parallel to c-axis

3.37 W/(m K)

perpendicular to c-axis

1.96 W/(m K)

298.3 K

parallel to c-axis

3.38 W/(m K)

perpendicular to c-axis

1.97 W/(m K)

273.2 K

parallel to c-axis

3.60 W/(m K)

perpendicular to c-axis

2.08 W/(m K)

see all 55 conductivities ...

Pyykkö Covalent Radius

single bond

136 pm

double bond

128 pm

triple bond

121 pm

Atomic Radius

143 pm

Enthalpy of Fusion

1 atm

13.5 kJ/mol

Enthalpy of Vaporization

1 atm

50.63 kJ/mol

Quantity

Tellurium Atomic Structure

Notes

Ionization Energies

I   (1)

 9.0096 eV

II  (2)

18.6 eV   

III (3)

27.96 eV  

IV  (4)

37.41 eV  

see all 7 energies ...

Electron Affinity

1.970875 ± 0.000007 eV

15896.18 ± 0.05 cm-1  

Electron Binding Energies

K    (1s)

31814 eV  

LI   (2s)

 4939 eV  

LII  (2p1/2)

 4612 eV  

LIII (2p3/2)

 4341 eV  

see all 14 energies ...

Electron Configuration

Orbital Occupancy

[Kr] 4d10 5s2 5p4

[Kr] represents the closed-shell electron configuration of krypton

Orbital Filling Order

[Kr] 5s2 4d10 5p4

[Kr] represents the closed-shell electron configuration of krypton

Term Symbol

3P2

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

50.9568

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

50.9568

Zeff = ζ × n

2s

Orbital Exponent

19.1656

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

38.3312

Zeff = ζ × n

see all 11 effective nuclear charges ...

Screening Percentage

79.9%

Fluorescence Yields

ωK

0.875

ωL1

0.041

ωL2

0.074

ωL3

0.074

Coster-Kronig Yields

F12

0.18 

F13

0.25 

F23

0.153

Quantity

Tellurium Physical Properties

Notes

Density

liquid, 722.66 K

5.797 g/ml 

solid, 25 °C

6.240 g/cm3

Molar Mass

Rounded

127.6 g/mol

for regular calculations

Standard

127.60 ± 0.03 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

20.46 cm3/mol

Physical Form

gray-white rhombohedral crystals

Speed of Sound

solid, 293 K

2610 m/s

calculated value

Specific Gravity

68 °F, water at 4 °C (39.2 °F)

6.24

Young's Modulus

47.1 GPa

Poisson's Ratio

0.180

Dielectric Constant

polycrystalline

27.5

monocrystalline

28.0

11 component of dielectric tensor, low frequency limit

30  

33 component of dielectric tensor, low frequency limit

43  

11 component of dielectric tensor, high frequency limit

23  

33 component of dielectric tensor, high frequency limit

36  

Electrical Resistivity

solid, 298 K

4.36×10-3 Ohm m

Contact Potential

4.70 eV

Photoelectric Work Function

4.76 eV

Superconducting Transition Temperature

35 GPa

7.5 K

maximum temperature

Mineralogical Hardness

2.25

Reflectivity

surface polished

0.6 μm

49%

0.8 μm

48%

1.0 μm

50%

see all 6 reflectivities ...

Isothermal Bulk Modulus

300 K

23.0 GPa

Isothermal Compressibility

300 K

0.0435 GPa-1

Gram Atomic Volume

21 cm3

Quantity

Tellurium Atomic Interaction

Notes

Oxidation States

 6

less common with disagreement

 5

less common

 4

more common

 2

less common with disagreement

-1

less common

-2

less common with disagreement

Pauling Electronegativity

2.1

Mulliken-Jaffe Electronegativity

hybridsp3

2.57

hybrid16.7% s

2.41

orbitalp

2.06

Sanderson Electronegativity

2.618

Allred-Rochow Electronegativity

2.01

Configuration Energy

electron volt units

12.76 eV

Pauling units

 2.158  

Allen Electronegativity

2.158

Ghosh-Gupta Electronegativity

5.3250 eV

Nagle Electronegativity

2.08

Pearson Absolute Electronegativity

5.49 eV

Smith Electronegativity

oxidation state: 6

2.1

oxidation state: 4

2.2

oxidation state: -2

2.3

Chemical Hardness

3.52 eV

Cohesive Energy

per mole

211 kJ/mol    

per atom

  2.19 eV/atom

Quantity

Tellurium Thermodynamics

Notes

Melting Point

722.66 K

Boiling Point

1 atm

1261.15 K

Thermal Conductivity

solid

300 K

parallel to c-axis

3.37 W/(m K)

perpendicular to c-axis

1.96 W/(m K)

298.3 K

parallel to c-axis

3.38 W/(m K)

perpendicular to c-axis

1.97 W/(m K)

273.2 K

parallel to c-axis

3.60 W/(m K)

perpendicular to c-axis

2.08 W/(m K)

see all 55 conductivities ...

Critical Point

2329 K

Vapor Pressure

992.4 °C

100 kPa

768.8 °C

10 kPa

615 °C

1 kPa

502 °C

100 Pa

Enthalpy of Fusion

1 atm

13.5 kJ/mol

Enthalpy of Vaporization

1 atm

50.63 kJ/mol

Isobaric Molar Heat Capacity

298.15 K, 1 bar

25.73 J/(mol K)

Isobaric Specific Heat Capacity

298.15 K, 1 bar

0.202 J/(g K)

Debye Temperature

Low Temperature Limit ( 0 K )

152 K

Quantity

Tellurium Identification

Notes

CAS Number

13494-80-9

ICSC Number

powder

0986

RTECS Number

WY2625000

Quantity

Tellurium Atomic Size

Notes

Atomic Radius

143 pm

Orbital Radius

111.1 pm

Pyykkö Covalent Radius

single bond

136 pm

double bond

128 pm

triple bond

121 pm

Cordero Covalent Radius

138 pm

Shannon-Prewitt Crystal Radius

ion charge: -2, coordination number: 6

207 pm

ion charge: +4

coordination number: 3

 66 pm

coordination number: 4

 80 pm

coordination number: 6

111 pm

ion charge: +6

coordination number: 4

 57 pm

coordination number: 6

 70 pm

Shannon-Prewitt Effective Ionic Radius

ion charge: -2, coordination number: 6

221 pm

ion charge: +4

coordination number: 3

 52 pm

coordination number: 4

 66 pm

coordination number: 6

 97 pm

ion charge: +6

coordination number: 4

 43 pm

coordination number: 6

 56 pm

Pauling Empirical Crystal Radius

ion charge: -2

221 pm

Pauling Univalent Radius

ion charge: +1

 82 pm

ion charge: -1

250 pm

Batsanov Crystallographic Van Der Waals Radius

2.1×102 pm

Batsanov Equilibrium Van Der Waals Radius

236 pm

Bondi Van Der Waals Radius

206 pm

Pauling Van Der Waals Radius

220 pm

Slater Atomic-Ionic Radius

140 pm

Quantity

Tellurium Crystal Structure

Notes

Allotropes

allotrope

α-tellurium

symbol

αTe

allotrope

β-tellurium

symbol

βTe

allotrope

γ-tellurium

symbol

γTe

Nearest Neighbor Distance

300 K, 1 atm

286 pm

Atomic Concentration

300 K, 1 atm

2.94×1022 cm-3

Quantity

Tellurium History

Notes

Discovery

date of discovery

1783

discoverer

Baron Franz Joseph Müller von Reichenstein

birth

July 1, 1740

death

October 12, 1825 (1826?)

location of discovery

Sibiu, Romania

Origin of Element Name

origin

tellus

origin description

celestial body—Latin for Earth

Origin of Element Symbol

symbol: Te

origin

tellurium

origin description

element name

U.S. Towns Named After Elements

Tellurium, Colorado

Telluride, Colorado

Quantity

Tellurium Abundances

Notes

Earth's Crust

1×10-3 ppm

Earth's Mantle

8 ppb

primitive mantle

Earth's Core

0.85 ppm

Bulk Earth

0.3 ppm

U.S. Coal

<0.1 ppm

estimated from USGS and literature data

Human Body

0.7 mg

based on a 70 kg "reference man"

Human Hair

<2 ppm

Human Kidney

0.07 ppm

Human Liver

0.014 ppm

Human Muscle

0.017 ppm

Solar System

4.81

number of atoms for every 106 atoms of silicon

Meteorites

2.22 ± 0.04

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Quantity

Tellurium Nomenclature

Notes

Element Names in Other Languages

French

tellure

German

Tellur

Italian

tellurio

Spanish

teluro

Portuguese

telúrio

Anions or Anionic Substituent Groups

telluride (general)

Te•-, tellanidyl, telluride(•1-)

Te2-, tellanediide, telluride(2-)

Cations or Cationic Substituent Groups

tellurium

Ligands

tellurido (general)

Te•-, tellanidyl, tellurido(•1-)

Te2-, tellanediido, tellurido(2-)

Heteroatomic Anion

tellurate

'a' Term—Substitutive Nomenclature

tellura

'y' Term—Chains and Rings Nomenclature

tellury

References    (Click the button next to a value above to see complete citation information for that entry)

Albright, Thomas A., and Jeremy K. Burdett. Problems in Molecular Orbital Theory. New York: Oxford University Press, 1992.

Allen, Leland C. "Electronegativity Is the Average One-Electron Energy of the Valence-Shell Electrons in Ground-State Free Atoms." Journal of the American Chemical Society, volume 111, number 25, 1989, pp. 9003–9014. doi:10.1021/ja00207a003

Allred, A. L., and E. G. Rochow. "A Scale of Electronegativity Based on Electrostatic Force." Journal of Inorganic and Nuclear Chemistry, volume 5, number 4, 1958, pp. 264–268. doi:10.1016/0022-1902(58)80003-2

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Andersen, T., H. K. Haugen, and H. Hotop. "Binding Energies in Atomic Negative Ions: III." Journal of Physical and Chemical Reference Data, volume 28, number 6, 1999, pp. 1511–1533.

Barsan, Michael E., editor. NIOSH Pocket Guide to Chemical Hazards. Cincinnati, Ohio: NIOSH Publications, 2007.

Batsanov, S. S. "Van der Waals Radii of Elements." Inorganic Materials, volume 37, number 9, 2001, pp. 871–885. See abstract

Bondi, A. "Van der Waals Volumes and Radii." The Journal of Physical Chemistry, volume 68, number 3, 1964, pp. 441–451. doi:10.1021/j100785a001

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Bratsch, Steven G. "Revised Mulliken Electronegativities: I. Calculation and Conversion to Pauling Units." Journal of Chemical Education, volume 65, number 1, 1988, pp. 34–41. doi:10.1021/ed065p34

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells." Atomic Data and Nuclear Data Tables, volume 85, number 2, 2003, pp. 291–315. doi:10.1016/S0092-640X(03)00059-7

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Chauvin, Remi. "Explicit Periodic Trend of van der Waals Radii." The Journal of Physical Chemistry, volume 96, number 23, 1992, pp. 9194–9197. doi:10.1021/j100202a023

Clementi, E., D. L. Raimondi, and W. P. Reinhardt. "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons." Journal of Chemical Physics, volume 47, number 4, 1967, pp. 1300–1307. doi:10.1063/1.1712084

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Debessai, M., J. J. Hamlin, and J. S. Schilling. "Comparison of the Pressure Dependences of Tc in the Trivalent d-Electron Superconductors Sc, Y, La, and Lu up to Megabar Pressures." Physical Review B, volume 78, number 6, 2008, pp. 064519–1 to 064519–10. doi:10.1103/PhysRevB.78.064519

Donohue, Jerry. The Structures Of The Elements, 2nd edition. Malabar, Florida: Robert E. Krieger Publishing Company, 1974.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Ebbing, Darrell D., and Steven D. Gammon. General Chemistry, 8th edition. Boston, MA: Houghton Mifflin Company, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Galasso, Francis S. Structure and Properties of Inorganic Solids. Oxford: Pergamon Press, 1970.

Ghosh, Dulal C., and Kartick Gupta. "A New Scale Of Electronegativity Of 54 Elements Of Periodic Table Based On Polarizability Of Atoms." Journal of Theoretical and Computational Chemistry, volume 5, number 4, 2006, pp. 895–911. doi:10.1142/S0219633606002726

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Haeffler, Gunnar, Andreas E. Klinkmuller, Jonas Rangell, Uldis Berzinsh, and Dag Hanstorp. "The Electron Affinity of Tellurium." Zeitschrift für Physik D Atoms, Molecules and Clusters, volume 38, number 3, 1996, pp. 211–214. doi:10.1007/s004600050085

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Horvath, A. L. "Critical Temperature of Elements and the Periodic System." Journal of Chemical Education, volume 50, number 5, 1973, pp. 335–336. doi:10.1021/ed050p335

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

International Labour Organization (ILO). International Chemical Safety Card for Tellurium (Powder). http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc09/icsc0986.htm. Accessed on May 4, 2010.

King, H. W. "Pressure-Dependent Allotropic Structures of the Elements." Bulletin of Alloy Phase Diagrams, volume 4, number 4, 1983, pp. 449–450. doi:10.1007/BF02868110

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Krause, M. O. "Atomic Radiative and Radiationless Yields for K and L Shells." Journal of Physical and Chemical Reference Data, volume 8, number 2, 1979, pp. 307–327.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Madelung, Otfried, editor. Semiconductors — Basic Data, 2nd edition. Berlin: Springer–Verlag, 1996.

Mann, Joseph B., Terry L. Meek, and Leland C. Allen. "Configuration Energies of the Main Group Elements." Journal of the American Chemical Society, volume 122, number 12, 2000, pp. 2780–2783. doi:10.1021/ja992866e

Marshall, James L. Discovery of the Elements: A Search for the Fundamental Principles of the Universe, 2nd edition. Boston, MA: Pearson Custom Publishing, 2002.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Moore, Charlotte E. Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra. Washington, D.C.: National Bureau of Standards, 1970.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Tellurium (Powder). http://www.cdc.gov/niosh/ipcsneng/neng0986.html. Accessed on May 4, 2010.

National Institute for Occupational Safety and Health (NIOSH). The Registry of Toxic Effects of Chemical Substances for Tellurium. http://www.cdc.gov/niosh-rtecs/wy280de8.html. Accessed on May 5, 2010.

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Oxtoby, David W., H. P. Gillis, and Alan Campion. Principles of Modern Chemistry, 6th edition. Belmont, CA: Thomson Brooks/Cole, 2008.

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pearson, Ralph G. "Absolute Electronegativity and Hardness: Application to Inorganic Chemistry." Inorganic Chemistry, volume 27, number 4, 1988, pp 734–740. doi:10.1021/ic00277a030

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Pyykkö, Pekka, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii." Chemistry - A European Journal, volume 11, number 12, 2005, pp. 3511–3520. doi:10.1002/chem.200401299

Ringnes, Vivi. "Origin of the Names of Chemical Elements." Journal of Chemical Education, volume 66, number 9, 1989, pp. 731–738. doi:10.1021/ed066p731

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sanderson, R. T. Simple Inorganic Substances. Malabar, FL: Robert E. Krieger Publishing Co., Inc., 1989.

Sanderson, R. T. "Principles of Electronegativity: Part I. General Nature." Journal of Chemical Education, volume 65, number 2, 1988, pp. 112–118. doi:10.1021/ed065p112

Sanderson, R. T. Polar Covalence. New York: Academic Press, Inc., 1983.

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Scientific Group Thermodata Europe (SGTE). Pure Substances: Part 1—Elements and Compounds from AgBr to Ba3N2. Edited by I. Hurtado and D. Neuschütz. Berlin: Springer-Verlag, 1999. doi:10.1007/10652891_3

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Wagman, Donald D., William H. Evans, Vivian B. Parker, Richard H. Schumm, Iva Halow, Sylvia M. Bailey, Kenneth L. Churney, and Ralph L. Nuttall. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 11, supplement 2, 1982, pp. 2–1 to 2–392.

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Weeks, Mary Elvira, and Henry M. Leicester. Discovery of the Elements, 7th edition. Easton, PA: Journal of Chemical Education, 1968.

Wieser, Michael E., and Tyler B. Coplen. "Atomic weights of the elements 2009 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 83, number 2, 2011, pp. 359–396. doi:10.1351/PAC-REP-10-09-14

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.

Young, K. F., and H. P. R. Frederikse. "Compilation of the Static Dielectric Constant of Inorganic Solids." Journal of Physical and Chemical Reference Data, volume 2, number 2, 1973, pp. 313–409.