Solutions manuals and the Numerari scientific calculator from KnowledgeDoor Learn more about our solutions manuals Learn more about Numerari

Element

Superconducting Transition Temperature

Click button to see citations

Notes

Aluminum

 1.1810 K  

ITS-90 first-quality, secondary reference point

single-crystal nanowire, 30 nm diameter

 1.9 K     

single-crystal nanowire, 70 nm diameter

 1.7 K     

Americium

ambient pressure

 0.79 K    

6 GPa

 2.2 K     

maximum temperature

α-americium

 0.6 K     

β-americium

 1.0 K     

Antimony

25 GPa

 3.9 K     

maximum temperature

Arsenic

32 GPa

 2.4 K     

maximum temperature

Barium

18 GPa

 5 K       

maximum temperature

Beryllium

beryllium films

   9.6 ± 0.1 K   

bulk value

 0.026 K   

Bismuth

9.1 GPa

 8.5 K     

maximum temperature

Boron

250 GPa

11.2 K     

maximum temperature

175 GPa

 6 K       

Bromine

100 GPa

 1.4 K     

maximum temperature

Cadmium

 0.517 ± 0.002 K 

single crystal, 99.999% purity

 0.515 ± 0.002 K 

Calcium

161 GPa

25 K       

maximum temperature

Cerium

5 GPa

 1.7 K     

maximum temperature

Cesium

12 GPa

 1.3 K     

maximum temperature

Europium

142 GPa

 2.75 K    

maximum temperature

80 GPa

 1.8 K     

Gallium

ambient pressure

 1.091 K   

1.4 GPa

 7 K       

maximum temperature

0 Pa

 1.091 K   

Germanium

11.5 GPa

 5.35 K    

maximum temperature

Hafnium

 0.128 K   

62 GPa

 8.6 K     

maximum temperature

Indium

 3.4145 K  

ITS-90 first-quality, secondary reference point

Iodine

25 GPa

 1.2 K     

maximum temperature

Iridium

0.1125 ± 0.0005 K

Iron

20 GPa, crystallographic hcp phase, non-magnetic

 2 K       

maximum temperature

Lanthanum

15 GPa

13 K       

maximum temperature

α-lanthanum

  4.88 ± 0.02 K  

β-lanthanum

ambient pressure

 6.00 K    

0 Pa

 6.00 K    

Lead

 7.1997 K  

ITS-90 first-quality, secondary reference point

Lithium

ambient pressure

 0.0004 K  

30 GPa

14 K       

maximum temperature

20.3 GPa

 5.47 K    

Lutetium

174 GPa

12.4 K     

maximum temperature

Mercury

α-mercury

 4.154 ± 0.001 K 

β-mercury

 3.949 K   

Molybdenum

 0.915 ± 0.005 K 

Niobium

 9.2880 K  

ITS-90 first-quality, secondary reference point

10 GPa

 9.9 K     

maximum temperature

Osmium

ambient pressure

 0.655 K   

0 Pa

 0.655 K   

Oxygen

100 GPa

 0.6 K     

maximum temperature

Phosphorus

black phosphorus

32 GPa

 9.5 K     

maximum temperature

100 GPa

 4.3 K     

Protactinium

ambient pressure

 1.4 K     

0 Pa

 1.4 K     

Rhenium

 1.697 ± 0.006 K 

Rhodium

 0.000325 K

Ruthenium

ambient pressure

 0.51 K    

0 Pa

 0.51 K    

Scandium

107 GPa

19.6 K     

maximum temperature

111 GPa

 8.31 K    

74.2 GPa

 8.2 K     

Selenium

150 GPa

 8 K       

maximum temperature

Silicon

15 GPa, simple hexagonal phase

 8.2 K     

maximum temperature

Strontium

50 GPa

 7 K       

maximum temperature

Sulfur

200 GPa

  17.3 ± 0.5 K   

maximum temperature

Tantalum

ambient pressure

 4.483 K   

43 GPa

 4.5 K     

maximum temperature

0 Pa

 4.483 K   

Technetium

lower purity

  7.77 ± 0.02 K  

higher purity

  7.73 ± 0.02 K  

cylindrical single crystals

  7.46 ± 0.04 K  

prepared by electrodeposition and reduction

  7.46 ± 0.05 K  

Tellurium

35 GPa

 7.5 K     

maximum temperature

Thallium

ambient pressure

 2.39 K    

0 Pa

 2.39 K    

Thorium

ambient pressure

 1.368 K   

0 Pa

 1.368 K   

Tin

ambient pressure

 3.722 K   

11.3 GPa

 5.3 K     

maximum temperature

white tin, 0 Pa

 3.722 K   

Titanium

ambient pressure

 0.39 K    

56.0 GPa

 3.35 K    

maximum temperature

0 Pa

 0.39 K    

α-titanium

 0.38 K    

β-titanium

 6.4 K     

Tungsten

0.0154 ± 0.0005 K

Uranium

α-uranium, 1.2 GPa

 2.4 K     

maximum temperature

β-uranium, ambient pressure

 0.8 K     

Vanadium

ambient pressure

 5.38 K    

120 GPa

16.5 K     

maximum temperature

0 Pa

 5.38 K    

Yttrium

115 GPa

19.5 K     

maximum temperature

89.3 GPa

17 K       

30 GPa

 3.5 K     

Zinc

 0.8500 K  

ITS-90 first-quality, secondary reference point

Zirconium

ambient pressure

 0.546 K   

30 GPa

11 K       

maximum temperature

0 Pa

 0.546 K   

References    (Click the button next to a value above to see complete citation information for that entry)

Amaya, K., S. Furomoto, T. Kimura, K. Shimizu, and Y. Onuki. "Search for Superconductivity of Magnetic Metals." Journal of Physics: Condensed Matter, volume 14, number 44, 2002, 10467. doi:10.1088/0953-8984/14/44/315

Arblaster, J. W. "Thermodynamic Properties of the Platinum Metals on ITS-90." Platinum Metals Review, volume 40, number 2, 1996, pp. 62–63.

Bedford, R. E., G. Bonnier, H. Maas, and F. Pavese. "Recommended Values of Temperature on the International Temperature Scale of 1990 for a Selected Set of Secondary Reference Points." Metrologia, volume 33, number 2, 1996, pp. 133–154. doi:10.1088/0026-1394/33/2/3

Buchal, Ch., F. Pobell, R. M. Mueller, M. Kubota, and J. R. Owers-Bradley. "Superconductivity of Rhodium at Ultralow Temperatures." Physical Review Letters, volume 50, number 1, 1983, pp. 64–67. doi:10.1103/PhysRevLett.50.64

Chang, K. J., Michel M. Dacorogna, Marvin L. Cohen, J. M. Mignot, G. Chouteau, and G. Martinez. "Superconductivity in High-Pressure Metallic Phases of Si." Physical Review Letters, volume 54, number 21, 1985, pp. 2375–2378. doi:10.1103/PhysRevLett.54.2375

Collings, E. W. Applied Superconductivity, Metallurgy, and Physics of Titanium Alloys, volume 1: Fundamentals. The International Cryogenics Monograph Series. Edited by K. D. Timmerhaus and Alan F. Clark. New York: Plenum Publishing Corporation, 1986.

Debessai, M., J. J. Hamlin, and J. S. Schilling. "Comparison of the Pressure Dependences of Tc in the Trivalent d-Electron Superconductors Sc, Y, La, and Lu up to Megabar Pressures." Physical Review B, volume 78, number 6, 2008, pp. 064519–1 to 064519–10. doi:10.1103/PhysRevB.78.064519

Debessai, M., T. Matsuoka, J. J. Hamlin, J. S. Schilling, and K. Shimizu. "Pressure-Induced Superconducting State of Europium Metal at Low Temperatures." Physical Review Letters, volume 102, number 19, 2009, pp. 197002–1 to 197002–4. doi:10.1103/PhysRevLett.102.197002

Deemyad, Shanti, and James S. Schilling. "Superconducting Phase Diagram of Li Metal in Nearly Hydrostatic Pressures up to 67 GPa." Physical Review Letters, volume 91, number 16, 2003, pp. 167001–1 to 167001–4. doi:10.1103/PhysRevLett.91.167001

Eremets, Mikhail I., Viktor V. Struzhkin, Ho-kwang Mao, and Russell J. Hemley. "Superconductivity in Boron." Science, volume 293, number 5528, 2001, pp. 272–274. doi:10.1126/science.1062286

Glover, Rolfe E., Stefan Moser, and Friedhold Baumann. "Superconducting Beryllium Films." Journal of Low Temperature Physics, volume 5, number 5, 1971, pp. 519–536. doi:10.1007/BF00628182

Gregoryanz, Eugene, Viktor V. Struzhkin, Russell J. Hemley, Mikhail I. Eremets, Ho-kwang Mao, and Yuri A. Timofeev. "Superconductivity in the Chalcogens up to Multimegabar Pressures." Physical Review B, volume 65, number 6, 2002, pp. 064504–1 to 064504–6. doi:10.1103/PhysRevB.65.064504

Gubser, D. U., and R. J. Soulen. "Thermodynamic Properties of Superconducting Iridium." Journal of Low Temperature Physics, volume 13, number 3-4, 1973, pp. 211–226. doi:10.1007/BF00654062

Hamlin, J. J., and J. S. Schilling. "Pressure-Induced Superconductivity in Sc to 74 GPa." Physical Review B, volume 76, number 1, 2007, pp. 012505–1 to 012505–4. doi:10.1103/PhysRevB.76.012505

Hamlin, J. J., V. G. Tissen, and J. S. Schilling. "Superconductivity at 20 K in Yttrium Metal at Pressures Exceeding 1 Mbar." Physica C: Superconductivity, volume 451, number 2, 2007, pp. 82–85. doi:10.1016/j.physc.2006.10.012

Hamlin, J. J., V. G. Tissen, and J. S. Schilling. "Superconductivity at 17 K in Yttrium Metal under nearly Hydrostatic Pressures up to 89 GPa." Physical Review B, volume 73, number 9, 2006, pp. 094522–1 to 094522–4. doi:10.1103/PhysRevB.73.094522

Karuzawa, M., M Ishizuka, and S Endo. "The Pressure Effect on the Superconducting Transition Temperature of Black Phosphorus." Journal of Physics: Condensed Matter, volume 14, number 44, 2002, 10759. doi:10.1088/0953-8984/14/44/372

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Kurakado, Masahiko, Toshiro Takabatake, and Hiromasa Mazaki. "Superconducting Transition Temperature of Technetium and Lead." Bulletin of the Institute for Chemical Research, Kyoto University, volume 55, number 1, 1977, pp. 38–45.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Roberts, B. W. "Survey of Superconductive Materials and Critical Evaluation of Selected Properties." Journal of Physical and Chemical Reference Data, volume 5, number 3, 1976, pp. 581–821.

Schooley, James F. "Superconductive Transition in Cadmium." Journal of Low Temperature Physics, volume 12, number 5-6, 1973, pp. 421–437. doi:10.1007/BF00654948

Schwochau, Klaus. Technetium Chemistry and Radiopharmaceutical Applications. Weinheim, Germany: WILEY-VCH Verlag GmbH, 2000.

Sekula, S. T., R. H. Kernohan, and G. R. Love. "Superconducting Properties of Technetium." Physical Review, volume 155, number 2, 1967, pp. 364–369. doi:10.1103/PhysRev.155.364

Shimizu, K., K. Suhara, M. Ikumo, M. I. Eremets, and K. Amaya. "Superconductivity in Oxygen." Nature, volume 393, number 6687, 1998, pp. 767–769. doi:10.1038/31656

Singh, Meenakshi, Jian Wang, Mingliang Tian, Qi Zhang, Alexis Pereira, Nitesh Kumar, Thomas E. Mallouk, and Moses H. W. Chan. "Synthesis and Superconductivity of Electrochemically Grown Single-Crystal Aluminum Nanowires." Chemistry of Materials, volume 21, number 23, 2009, pp. 5557–5559. doi:10.1021/cm901302z

Wittig, Jörg. "Die Supraleitung von Zinn und Blei unter sehr hohem Druck." Zeitschrift für Physik A Hadrons and Nuclei, volume 195, number 2, 1966, pp. 228–238. doi:10.1007/BF01328890

Yabuuchi, Takahiro, Takahiro Matsuoka, Yuki Nakamoto, and Katsuya Shimizu. "Superconductivity of Ca Exceeding 25 K at Megabar Pressures." Journal of the Physical Society of Japan, volume 75, number 8, 2006, pp. 083703–1 to 083703–3. doi:10.1143/JPSJ.75.083703