Bismuth

Bismuth Navigation

Other Elements

By Name

By Symbol

By Number

Solutions manuals and the Numerari scientific calculator from KnowledgeDoor Learn more about our solutions
manuals Learn more about Numerari

Quantity

Bismuth Quick Reference

Click button to see citations

Notes

Symbol

Bi

Atomic Number

83

Atomic Weight

Rounded

209.0

for regular calculations

Standard

208.98040 ± 0.00001

for precise calculations

Oxidation States

 5

less common

 3

more common

 1

less common

-3

less common

Pauling Electronegativity

2.02

Electron Configuration

Orbital Occupancy

[Xe] 4f14 5d10 6s2 6p3

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s2 4f14 5d10 6p3

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

4S3/2

see expanded configuration ...

Ionization Energies

I   (1)

 7.2855 eV

II  (2)

16.703 eV 

III (3)

25.56 eV  

IV  (4)

45.3 eV   

see all 6 energies ...

Electron Affinity

0.942362 ± 0.000013 eV

 7600.66 ± 0.10 cm-1  

Density

liquid, 544.54 K

10.064 g/ml 

solid, 25 °C

 9.790 g/cm3

Molar Volume

solid, 298 K, 1 atm

21.31 cm3/mol

Melting Point

1 atm

544.552 K

ITS-90 first-quality, secondary reference point (freezing point)

Boiling Point

1 atm

1837.15 K

Thermal Conductivity

solid

300 K

polycrystalline

7.87 W/(m K)

parallel to trigonal-axis

5.28 W/(m K)

perpendicular to trigonal-axis

9.15 W/(m K)

273.2 K

polycrystalline

8.20 W/(m K)

parallel to trigonal-axis

5.54 W/(m K)

perpendicular to trigonal-axis

9.53 W/(m K)

see all 49 conductivities ...

Pyykkö Covalent Radius

single bond

151 pm

double bond

141 pm

triple bond

135 pm

Atomic Radius

182 pm

Enthalpy of Fusion

1 atm

10.48 kJ/mol

Enthalpy of Vaporization

1 atm

179.1 kJ/mol

Quantity

Bismuth Atomic Structure

Notes

Ionization Energies

I   (1)

 7.2855 eV

II  (2)

16.703 eV 

III (3)

25.56 eV  

IV  (4)

45.3 eV   

see all 6 energies ...

Electron Affinity

0.942362 ± 0.000013 eV

 7600.66 ± 0.10 cm-1  

Electron Binding Energies

K    (1s)

90526 eV  

LI   (2s)

16388 eV  

LII  (2p1/2)

15711 eV  

LIII (2p3/2)

13419 eV  

see all 21 energies ...

Electron Configuration

Orbital Occupancy

[Xe] 4f14 5d10 6s2 6p3

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s2 4f14 5d10 6p3

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

4S3/2

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

81.3982

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

81.3982

Zeff = ζ × n

2s

Orbital Exponent

30.5880

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

61.1760

Zeff = ζ × n

see all 15 effective nuclear charges ...

Screening Percentage

83.0%

Fluorescence Yields

ωK

0.964

ωL1

0.132

ωL2

0.411

ωL3

0.353

Coster-Kronig Yields

F12

0.063

F13

0.62 

F23

0.117

Quantity

Bismuth Physical Properties

Notes

Density

liquid, 544.54 K

10.064 g/ml 

solid, 25 °C

 9.790 g/cm3

Molar Mass

Rounded

209.0 g/mol

for regular calculations

Standard

208.98040 ± 0.00001 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

21.31 cm3/mol

Physical Form

gray-white soft metal

Linear Thermal Expansion Coefficient

25 °C

13.4×10-6 K-1

Speed of Sound

liquid

1640 m/s to 1660 m/s

solid, 293 K

1790 m/s

calculated value

Young's Modulus

34 GPa

Poisson's Ratio

0.330

Electrical Resistivity

solid, 295 K

116×10-8 Ohm m

Contact Potential

4.17 eV

Photoelectric Work Function

4.25 eV

Superconducting Transition Temperature

9.1 GPa

8.5 K

maximum temperature

Mineralogical Hardness

2.25

Isothermal Bulk Modulus

300 K

31.5 GPa

Isothermal Compressibility

300 K

0.0317 GPa-1

Gram Atomic Volume

21 cm3

Quantity

Bismuth Atomic Interaction

Notes

Oxidation States

 5

less common

 3

more common

 1

less common

-3

less common

Pauling Electronegativity

2.02

Mulliken-Jaffe Electronegativity

hybrid20% s

2.15

Sanderson Electronegativity

2.342

Allred-Rochow Electronegativity

1.67

Configuration Energy

electron volt units

11.9 eV

Pauling units

 2.01  

Allred Electronegativity

oxidation state: 3

2.02

Nagle Electronegativity

1.83

Pearson Absolute Electronegativity

4.69 eV

Smith Electronegativity

oxidation state: 3

1.95

Chemical Hardness

3.74 eV

Cohesive Energy

per mole

210 kJ/mol    

per atom

  2.18 eV/atom

Quantity

Bismuth Thermodynamics

Notes

Melting Point

1 atm

544.552 K

ITS-90 first-quality, secondary reference point (freezing point)

Boiling Point

1 atm

1837.15 K

Thermal Conductivity

solid

300 K

polycrystalline

7.87 W/(m K)

parallel to trigonal-axis

5.28 W/(m K)

perpendicular to trigonal-axis

9.15 W/(m K)

273.2 K

polycrystalline

8.20 W/(m K)

parallel to trigonal-axis

5.54 W/(m K)

perpendicular to trigonal-axis

9.53 W/(m K)

see all 49 conductivities ...

Critical Point

4620 K

Vapor Pressure

1562 °C

100 kPa

1265 °C

10 kPa

1052 °C

1 kPa

892 °C

100 Pa

768 °C

10 Pa

668 °C

1 Pa

Enthalpy of Fusion

1 atm

10.48 kJ/mol

Enthalpy of Vaporization

1 atm

179.1 kJ/mol

Isobaric Molar Heat Capacity

298.15 K, 1 bar

25.52 J/(mol K)

Isobaric Specific Heat Capacity

298.15 K, 1 bar

0.122 J/(g K)

Electronic Heat Capacity Coefficient

0.0085 mJ/(mol K2)

Debye Temperature

Low Temperature Limit ( 0 K )

120 K

Room Temperature ( 298 K )

116 K

Quantity

Bismuth Identification

Notes

CAS Number

7440-69-9

Quantity

Bismuth Atomic Size

Notes

Atomic Radius

182 pm

Orbital Radius

129.5 pm

Pyykkö Covalent Radius

single bond

151 pm

double bond

141 pm

triple bond

135 pm

Cordero Covalent Radius

148 pm

Shannon-Prewitt Crystal Radius

ion charge: +3

coordination number: 5

110 pm

coordination number: 6

117 pm

coordination number: 8

131 pm

ion charge: +5, coordination number: 6

 90 pm

Shannon-Prewitt Effective Ionic Radius

ion charge: +3

coordination number: 5

 96 pm

coordination number: 6

103 pm

coordination number: 8

117 pm

ion charge: +5, coordination number: 6

 76 pm

Pauling Empirical Crystal Radius

ion charge: +5

74 pm

Pauling Univalent Radius

ion charge: +1

98 pm

Batsanov Crystallographic Van Der Waals Radius

2.3×102 pm

Batsanov Equilibrium Van Der Waals Radius

352 pm

Slater Atomic-Ionic Radius

160 pm

Quantity

Bismuth Crystal Structure

Notes

Allotropes

allotrope

α-bismuth

symbol

αBi

allotrope

β-bismuth

symbol

βBi

allotrope

γ-bismuth

symbol

γBi

allotrope

δ-bismuth

symbol

δBi

allotrope

ε-bismuth

symbol

εBi

allotrope

ζ-bismuth

symbol

ζBi

Nearest Neighbor Distance

300 K, 1 atm

307 pm

Atomic Concentration

300 K, 1 atm

2.82×1022 cm-3

Quantity

Bismuth History

Notes

Discovery

date of discovery

circa 1500

discoverer

unknown

location of discovery

Central Europe

Origin of Element Name

origin

bisemutum

origin description

word—German

Origin of Element Symbol

symbol: Bi

origin

bismuth

origin description

element name

Quantity

Bismuth Abundances

Notes

Earth's Crust

8.5×10-3 ppm

Earth's Mantle

5 ppb

primitive mantle

Earth's Core

0.03 ppm

Bulk Earth

0.01 ppm

Ocean Water

2×10-5 ppm

Metalliferous Ocean Sediment

Basal

0.17 ppm

U.S. Coal

<1.0 ppm

estimated from USGS and literature data

Human Body

<0.5 mg

based on a 70 kg "reference man"

Human Bone

<0.2 ppm

Human Hair

2 ppm

Human Liver

0.015 ppm to 0.33 ppm

Human Muscle

0.032 ppm

Human Nail

1.3 ppm

Solar System

0.144

number of atoms for every 106 atoms of silicon

Meteorites

0.70 ± 0.06

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Quantity

Bismuth Nomenclature

Notes

Element Names in Other Languages

French

bismuth

German

Wismut

Italian

bismuto

Spanish

bismuto

Portuguese

bismuto

Anions or Anionic Substituent Groups

bismuthide (general)

Bi3-, bismuthide(3-), bismuthanetriide

Cations or Cationic Substituent Groups

bismuth

Ligands

bismuthido (general)

Bi3-, bismuthido(3-), bismuthanetriido

Heteroatomic Anion

bismuthate

'a' Term—Substitutive Nomenclature

bisma

'y' Term—Chains and Rings Nomenclature

bismy

References    (Click the button next to a value above to see complete citation information for that entry)

Allred, A. L. "Electronegativity Values from Thermochemical Data." Journal of Inorganic and Nuclear Chemistry, volume 17, number 3-4, 1961, pp. 215–221. doi:10.1016/0022-1902(61)80142-5

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Batsanov, S. S. "Van der Waals Radii of Elements." Inorganic Materials, volume 37, number 9, 2001, pp. 871–885. See abstract

Bedford, R. E., G. Bonnier, H. Maas, and F. Pavese. "Recommended Values of Temperature on the International Temperature Scale of 1990 for a Selected Set of Secondary Reference Points." Metrologia, volume 33, number 2, 1996, pp. 133–154. doi:10.1088/0026-1394/33/2/3

Bilodeau, René C., and Harold K. Haugen. "Electron Affinity of Bi Using Infrared Laser Photodetachment Threshold Spectroscopy." Physical Review A, volume 64, number 2, 2001, pp. 024501–1 to 024501–3. doi:10.1103/PhysRevA.64.024501

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Bratsch, Steven G. "Revised Mulliken Electronegativities: I. Calculation and Conversion to Pauling Units." Journal of Chemical Education, volume 65, number 1, 1988, pp. 34–41. doi:10.1021/ed065p34

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells. Part II: The L1 Subshell Revisited." Atomic Data and Nuclear Data Tables, volume 95, number 1, 2009, pp. 115–124. doi:10.1016/j.adt.2008.08.002

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells." Atomic Data and Nuclear Data Tables, volume 85, number 2, 2003, pp. 291–315. doi:10.1016/S0092-640X(03)00059-7

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Clementi, E., D. L. Raimondi, and W. P. Reinhardt. "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons." Journal of Chemical Physics, volume 47, number 4, 1967, pp. 1300–1307. doi:10.1063/1.1712084

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

Cronan, D. S. "Basal Metalliferous Sediments from the Eastern Pacific." Geological Society of America Bulletin, volume 87, number 6, 1976, pp. 928–934. doi:10.1130/0016-7606(1976)87<928:BMSFTE>2.0.CO;2

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Debessai, M., J. J. Hamlin, and J. S. Schilling. "Comparison of the Pressure Dependences of Tc in the Trivalent d-Electron Superconductors Sc, Y, La, and Lu up to Megabar Pressures." Physical Review B, volume 78, number 6, 2008, pp. 064519–1 to 064519–10. doi:10.1103/PhysRevB.78.064519

Donohue, Jerry. The Structures Of The Elements, 2nd edition. Malabar, Florida: Robert E. Krieger Publishing Company, 1974.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Ebbing, Darrell D., and Steven D. Gammon. General Chemistry, 8th edition. Boston, MA: Houghton Mifflin Company, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Höhne, G. W. H., W. F. Hemminger, and H.-J. Flammersheim. Differential Scanning Calorimetry, 2nd edition. Berlin: Springer–Verlag, 2003.

Horvath, A. L. "Critical Temperature of Elements and the Periodic System." Journal of Chemical Education, volume 50, number 5, 1973, pp. 335–336. doi:10.1021/ed050p335

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

Jr., Elbert J. Little,, and Mark M. Jones. "A Complete Table of Electronegativities." Journal of Chemical Education, volume 37, number 5, 1960, pp. 231–233. doi:10.1021/ed037p231

King, H. W. "Pressure-Dependent Allotropic Structures of the Elements." Bulletin of Alloy Phase Diagrams, volume 4, number 4, 1983, pp. 449–450. doi:10.1007/BF02868110

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Li, Y.-H., and J. E. Schoonmaker. "Chemical Composition and Mineralogy of Marine Sediments." pp. 1–36 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Mann, Joseph B., Terry L. Meek, and Leland C. Allen. "Configuration Energies of the Main Group Elements." Journal of the American Chemical Society, volume 122, number 12, 2000, pp. 2780–2783. doi:10.1021/ja992866e

Marshall, James L. Discovery of the Elements: A Search for the Fundamental Principles of the Universe, 2nd edition. Boston, MA: Pearson Custom Publishing, 2002.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Moore, Charlotte E. Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra. Washington, D.C.: National Bureau of Standards, 1970.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

Nicholas, J. V., and D. R. White. "Temperature." pp. 8–41 in Measurement of the Thermodynamic Properties of Single Phases. Edited by A. R. H. Goodwin, W. A. Wakeham, and K. N. Marsh. Amsterdam: Elsevier Science, 2003.

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Oxtoby, David W., H. P. Gillis, and Alan Campion. Principles of Modern Chemistry, 6th edition. Belmont, CA: Thomson Brooks/Cole, 2008.

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pearson, Ralph G. "Absolute Electronegativity and Hardness: Application to Inorganic Chemistry." Inorganic Chemistry, volume 27, number 4, 1988, pp 734–740. doi:10.1021/ic00277a030

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Pyykkö, Pekka, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii." Chemistry - A European Journal, volume 11, number 12, 2005, pp. 3511–3520. doi:10.1002/chem.200401299

Ringnes, Vivi. "Origin of the Names of Chemical Elements." Journal of Chemical Education, volume 66, number 9, 1989, pp. 731–738. doi:10.1021/ed066p731

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sanderson, R. T. Simple Inorganic Substances. Malabar, FL: Robert E. Krieger Publishing Co., Inc., 1989.

Sanderson, R. T. "Principles of Electronegativity: Part I. General Nature." Journal of Chemical Education, volume 65, number 2, 1988, pp. 112–118. doi:10.1021/ed065p112

Sanderson, R. T. Polar Covalence. New York: Academic Press, Inc., 1983.

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Scientific Group Thermodata Europe (SGTE). Pure Substances: Part 1—Elements and Compounds from AgBr to Ba3N2. Edited by I. Hurtado and D. Neuschütz. Berlin: Springer-Verlag, 1999. doi:10.1007/10652891_3

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Stewart, G. R. "Measurement of low-temperature specific heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Wagman, Donald D., William H. Evans, Vivian B. Parker, Richard H. Schumm, Iva Halow, Sylvia M. Bailey, Kenneth L. Churney, and Ralph L. Nuttall. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 11, supplement 2, 1982, pp. 2–1 to 2–392.

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Weeks, Mary Elvira, and Henry M. Leicester. Discovery of the Elements, 7th edition. Easton, PA: Journal of Chemical Education, 1968.

Wieser, Michael E., and Tyler B. Coplen. "Atomic weights of the elements 2009 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 83, number 2, 2011, pp. 359–396. doi:10.1351/PAC-REP-10-09-14

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.