Numerari from KnowledgeDoor---The scientific calculator with graphing, unit keypads, complex numbers, constants, advanced functions, user-defined keys, quick copy, and more! Learn more (Link leaves KnowledgeDoor website)

Tin

Tin Navigation

Other Elements

By Name

By Symbol

By Number

Quantity

Tin Quick Reference

Click button to see citations

Notes

Symbol

Sn

Atomic Number

50

Atomic Weight

Rounded

118.71

for regular calculations

Standard

118.710 ± 0.007

for precise calculations

Oxidation States

 4

less common with disagreement

 2

more common with disagreement

-4

more common

Pauling Electronegativity

oxidation state: 4

1.96

oxidation state: 2

1.80

Electron Configuration

Orbital Occupancy

[Kr] 4d10 5s2 5p2

[Kr] represents the closed-shell electron configuration of krypton

Orbital Filling Order

[Kr] 5s2 4d10 5p2

[Kr] represents the closed-shell electron configuration of krypton

Term Symbol

3P0

see expanded configuration ...

Ionization Energies

I   (1)

 7.34392 eV

II  (2)

14.6322 eV 

III (3)

30.50260 eV

IV  (4)

40.73502 eV

V   (5)

72.28 eV   

Electron Affinity

1.112066 ± 0.000015 eV

 8969.42 ± 0.12 cm-1  

Density

liquid

1500 K, 1 bar

6.330 g/ml 

1000 K, 1 bar

6.656 g/ml 

solid

400 K

7.234 g/cm3

300 K

7.283 g/cm3

200 K

7.331 g/cm3

100 K

7.375 g/cm3

gray tin, solid, 18 °C

7.285 g/cm3

see all 39 densities ...

Molar Volume

solid, 298 K, 1 atm

16.29 cm3/mol

Melting Point

1 atm

505.078 K

ITS-90 fixed point (freezing point)

Boiling Point

gray tin, 1 atm

2875.15 K

white tin, 1 atm

2875.15 K

Thermal Conductivity

solid

300 K

polycrystalline

66.6 W/(m K)

parallel to c-axis

51.5 W/(m K)

interpolated

perpendicular to c-axis

74.2 W/(m K)

interpolated

273.2 K

polycrystalline

68.2 W/(m K)

parallel to c-axis

52.7 W/(m K)

interpolated

perpendicular to c-axis

75.9 W/(m K)

interpolated

see all 53 conductivities ...

Pyykkö Covalent Radius

single bond

140 pm

double bond

130 pm

triple bond

132 pm

Atomic Radius

158 pm

Enthalpy of Fusion

1 atm

7.2 kJ/mol

Enthalpy of Vaporization

1 atm

290.4 kJ/mol

Quantity

Tin Atomic Structure

Notes

Ionization Energies

I   (1)

 7.34392 eV

II  (2)

14.6322 eV 

III (3)

30.50260 eV

IV  (4)

40.73502 eV

V   (5)

72.28 eV   

Electron Affinity

1.112066 ± 0.000015 eV

 8969.42 ± 0.12 cm-1  

Electron Binding Energies

K    (1s)

29200 eV  

LI   (2s)

 4465 eV  

LII  (2p1/2)

 4156 eV  

LIII (2p3/2)

 3929 eV  

see all 14 energies ...

Electron Configuration

Orbital Occupancy

[Kr] 4d10 5s2 5p2

[Kr] represents the closed-shell electron configuration of krypton

Orbital Filling Order

[Kr] 5s2 4d10 5p2

[Kr] represents the closed-shell electron configuration of krypton

Term Symbol

3P0

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

48.9920

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

48.9920

Zeff = ζ × n

2s

Orbital Exponent

18.4297

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

36.8594

Zeff = ζ × n

see all 11 effective nuclear charges ...

Screening Percentage

81.7%

Fluorescence Yields

ωK

0.860

ωL1

0.037

ωL2

0.065

ωL3

0.064

Coster-Kronig Yields

F12

0.17 

F13

0.3  

F23

0.148

Quantity

Tin Physical Properties

Notes

Density

liquid

1500 K, 1 bar

6.330 g/ml 

1000 K, 1 bar

6.656 g/ml 

solid

400 K

7.234 g/cm3

300 K

7.283 g/cm3

200 K

7.331 g/cm3

100 K

7.375 g/cm3

gray tin, solid, 18 °C

7.285 g/cm3

see all 39 densities ...

Molar Mass

Rounded

118.71 g/mol

for regular calculations

Standard

118.710 ± 0.007 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

16.29 cm3/mol

Physical Form

gray tin

cubic crystals

white tin

silvery tetragonal crystals

Linear Thermal Expansion Coefficient

25 °C

22.0×10-6 K-1

Speed of Sound

liquid, 240 °C, longitudinal wave

2470 m/s

solid

room temperature, rolled, longitudinal wave

3320 m/s

room temperature, rolled, shear wave

1670 m/s

room temperature, rolled, extensional wave

2730 m/s

20 °C

longitudinal wave

3380 m/s

shear wave

1594 m/s

281 K

2500 m/s

Specific Gravity

68 °F, water at 4 °C (39.2 °F)

7.28

Young's Modulus

white tin

49.9 GPa

Poisson's Ratio

white tin

0.357

Dielectric Constant

gray tin, 300 K, infrared reflectance measurements

24

Electrical Resistivity

white tin, solid, 295 K

11.0×10-8 Ohm m

Contact Potential

4.09 eV

Photoelectric Work Function

4.38 eV

Superconducting Transition Temperature

ambient pressure

3.722 K

11.3 GPa

5.3 K  

maximum temperature

white tin, 0 Pa

3.722 K

Superconducting Critical Magnetic Field at Absolute Zero

white tin

309×10-4 T

Superconducting Energy Gap

white tin, 0 K

11.5×10-4 eV

Mineralogical Hardness

1.5

Reflectivity

surface polished

1.0 μm

54%

2.0 μm

61%

4.0 μm

72%

see all 6 reflectivities ...

Isothermal Bulk Modulus

gray tin, 300 K

111 GPa

Isothermal Compressibility

gray tin, 300 K

0.00901 GPa-1

Gram Atomic Volume

16 cm3

Quantity

Tin Atomic Interaction

Notes

Oxidation States

 4

less common with disagreement

 2

more common with disagreement

-4

more common

Pauling Electronegativity

oxidation state: 4

1.96

oxidation state: 2

1.80

Mulliken-Jaffe Electronegativity

oxidation state: 4, hybridsp3

2.21

oxidation state: 2, hybrid30% s

1.85

Sanderson Electronegativity

oxidation state: 4

2.298

oxidation state: 2

1.49

Allred-Rochow Electronegativity

oxidation state: 4

1.72

Configuration Energy

electron volt units

10.79 eV

Pauling units

 1.824  

Allen Electronegativity

oxidation state: 4

1.824

Allred Electronegativity

oxidation state: 4

1.96

Ghosh-Gupta Electronegativity

4.672 eV

Nagle Electronegativity

1.70

Pearson Absolute Electronegativity

4.30 eV

Smith Electronegativity

oxidation state: 4

1.95

oxidation state: 2

1.75

Free Electron Fermi Surface Parameters

white tin, 300 K

electron concentration

14.48×1022 cm-3

radius parameter

2.23

fermi wavevector

1.62×108 cm-1

fermi velocity

1.88×108 cm/s

fermi energy

10.03 eV

fermi temperature

11.64×104 K

Chemical Hardness

3.05 eV

Cohesive Energy

per mole

303 kJ/mol    

per atom

  3.14 eV/atom

Quantity

Tin Thermodynamics

Notes

Melting Point

1 atm

505.078 K

ITS-90 fixed point (freezing point)

Boiling Point

gray tin, 1 atm

2875.15 K

white tin, 1 atm

2875.15 K

Thermal Conductivity

solid

300 K

polycrystalline

66.6 W/(m K)

parallel to c-axis

51.5 W/(m K)

interpolated

perpendicular to c-axis

74.2 W/(m K)

interpolated

273.2 K

polycrystalline

68.2 W/(m K)

parallel to c-axis

52.7 W/(m K)

interpolated

perpendicular to c-axis

75.9 W/(m K)

interpolated

see all 53 conductivities ...

Critical Point

5809 K

Vapor Pressure

2620 °C

100 kPa

2165 °C

10 kPa

1834 °C

1 kPa

1582 °C

100 Pa

1384 °C

10 Pa

1224 °C

1 Pa

Enthalpy of Fusion

1 atm

7.2 kJ/mol

Enthalpy of Vaporization

1 atm

290.4 kJ/mol

Isobaric Molar Heat Capacity

gray tin, 298.15 K, 1 bar

25.77 J/(mol K)

white tin, 298.15 K, 1 bar

26.99 J/(mol K)

Isobaric Specific Heat Capacity

white tin, 298.15 K, 1 bar

0.227 J/(g K)

Electronic Heat Capacity Coefficient

1.78 mJ/(mol K2)

Debye Temperature

Low Temperature Limit ( 0 K )

199 K

Room Temperature ( 298 K )

254 K

white tin, Low Temperature Limit ( 0 K )

200 K

Quantity

Tin Identification

Notes

CAS Number

gray tin

7440-31-5

white tin

7440-31-5

ICSC Number

powder

1535

RTECS Number

XP7320000

Quantity

Tin Atomic Size

Notes

Atomic Radius

158 pm

Orbital Radius

124.0 pm

Pyykkö Covalent Radius

single bond

140 pm

double bond

130 pm

triple bond

132 pm

Cordero Covalent Radius

139 pm

Shannon-Prewitt Crystal Radius

ion charge: +4

coordination number: 4

69 pm  

coordination number: 5

76 pm  

coordination number: 6

83.0 pm

coordination number: 7

89 pm  

coordination number: 8

95 pm  

Shannon-Prewitt Effective Ionic Radius

ion charge: +4

coordination number: 4

55 pm  

coordination number: 5

62 pm  

coordination number: 6

69.0 pm

coordination number: 7

75 pm  

coordination number: 8

81 pm  

Pauling Empirical Crystal Radius

ion charge: +4

 71 pm

ion charge: +2

112 pm

ion charge: -4

294 pm

Pauling Univalent Radius

ion charge: +1

 96 pm

ion charge: -1

370 pm

Batsanov Crystallographic Van Der Waals Radius

225 pm

Batsanov Equilibrium Van Der Waals Radius

246 pm

Bondi Van Der Waals Radius

217 pm

Slater Atomic-Ionic Radius

145 pm

Quantity

Tin Crystal Structure

Notes

Allotropes

allotrope

gray tin

alternate name

grey tin

alternate name

α-tin

symbol

αSn

allotrope

white tin

alternate name

β-tin

symbol

βSn

allotrope

γ-tin

symbol

γSn

alternate symbol

Sn-II

Nearest Neighbor Distance

300 K, 1 atm

281 pm

Atomic Concentration

300 K, 1 atm

2.91×1022 cm-3

Quantity

Tin History

Notes

Discovery

date of discovery

circa 2100 BC

discoverer

unknown

location of discovery

unknown

Origin of Element Name

origin

tin

origin description

word—Anglo-Saxon

Origin of Element Symbol

symbol: Sn

origin

stannum

origin description

word—Latin

Quantity

Tin Abundances

Notes

Earth's Crust

2.3 ppm

Earth's Mantle

138 ppb

primitive mantle

Earth's Core

0.5 ppm

Bulk Earth

0.25 ppm

Ocean Water

1×10-5 ppm

Metalliferous Ocean Sediment

Basal

0.6 ppm

River Water

4×10-5 ppm

U.S. Coal

1.3 ppm

Human Body

20 mg

based on a 70 kg "reference man"

Human Bone

1.4 ppm

Human Hair

0.4 ppm to 1 ppm

Human Kidney

0.68 ppm to 4.4 ppm

Human Liver

0.23 ppm to 2.3 ppm

Human Muscle

0.33 ppm to 2.4 ppm

Human Nail

12 ppm

Ferns

2.3 ppm

Fungi

7 ppm to 31 ppm

Solar System

3.82

number of atoms for every 106 atoms of silicon

Sun

2.0 ± 0.3

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Meteorites

2.12 ± 0.04

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Quantity

Tin Nomenclature

Notes

Element Names in Other Languages

French

etain

German

Zinn

Italian

stagno

Spanish

estaño

Portuguese

estanho

Anions or Anionic Substituent Groups

stannide

Cations or Cationic Substituent Groups

tin (general)

Sn2+, tin(2+)

Sn4+, tin(4+)

Ligands

stannido

Heteroatomic Anion

stannate

'a' Term—Substitutive Nomenclature

stanna

'y' Term—Chains and Rings Nomenclature

stanny

References    (Click the button next to a value above to see complete citation information for that entry)

Albright, Thomas A., and Jeremy K. Burdett. Problems in Molecular Orbital Theory. New York: Oxford University Press, 1992.

Allen, Leland C. "Electronegativity Is the Average One-Electron Energy of the Valence-Shell Electrons in Ground-State Free Atoms." Journal of the American Chemical Society, volume 111, number 25, 1989, pp. 9003–9014. doi:10.1021/ja00207a003

Allred, A. L. "Electronegativity Values from Thermochemical Data." Journal of Inorganic and Nuclear Chemistry, volume 17, number 3-4, 1961, pp. 215–221. doi:10.1016/0022-1902(61)80142-5

Allred, A. L., and E. G. Rochow. "A Scale of Electronegativity Based on Electrostatic Force." Journal of Inorganic and Nuclear Chemistry, volume 5, number 4, 1958, pp. 264–268. doi:10.1016/0022-1902(58)80003-2

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Andersen, T., H. K. Haugen, and H. Hotop. "Binding Energies in Atomic Negative Ions: III." Journal of Physical and Chemical Reference Data, volume 28, number 6, 1999, pp. 1511–1533.

Assael, Marc J., Agni E. Kalyva, Konstantinos D. Antoniadis, R. Michael Banish, Ivan Egry, Jiangtao Wu, Erhard Kaschnitz, and William A. Wakeham. "Reference Data for the Density and Viscosity of Liquid Copper and Liquid Tin." Journal of Physical and Chemical Reference Data, volume 39, number 3, 2010, pp. 033105–1 to 033105–8. doi:10.1063/1.3467496

Ball, David W. "Elemental Etymology: What's in a Name?" Journal of Chemical Education, volume 62, number 9, 1985, pp. 787–788. doi:10.1021/ed062p787

Barsan, Michael E., editor. NIOSH Pocket Guide to Chemical Hazards. Cincinnati, Ohio: NIOSH Publications, 2007.

Batsanov, S. S. "Van der Waals Radii of Elements." Inorganic Materials, volume 37, number 9, 2001, pp. 871–885. See abstract

Bondi, A. "Van der Waals Volumes and Radii." The Journal of Physical Chemistry, volume 68, number 3, 1964, pp. 441–451. doi:10.1021/j100785a001

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Bratsch, Steven G. "Revised Mulliken Electronegativities: I. Calculation and Conversion to Pauling Units." Journal of Chemical Education, volume 65, number 1, 1988, pp. 34–41. doi:10.1021/ed065p34

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells." Atomic Data and Nuclear Data Tables, volume 85, number 2, 2003, pp. 291–315. doi:10.1016/S0092-640X(03)00059-7

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Clementi, E., D. L. Raimondi, and W. P. Reinhardt. "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons." Journal of Chemical Physics, volume 47, number 4, 1967, pp. 1300–1307. doi:10.1063/1.1712084

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

Cronan, D. S. "Basal Metalliferous Sediments from the Eastern Pacific." Geological Society of America Bulletin, volume 87, number 6, 1976, pp. 928–934. doi:10.1130/0016-7606(1976)87<928:BMSFTE>2.0.CO;2

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Debessai, M., J. J. Hamlin, and J. S. Schilling. "Comparison of the Pressure Dependences of Tc in the Trivalent d-Electron Superconductors Sc, Y, La, and Lu up to Megabar Pressures." Physical Review B, volume 78, number 6, 2008, pp. 064519–1 to 064519–10. doi:10.1103/PhysRevB.78.064519

Donohue, Jerry. The Structures Of The Elements, 2nd edition. Malabar, Florida: Robert E. Krieger Publishing Company, 1974.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Ebbing, Darrell D., and Steven D. Gammon. General Chemistry, 8th edition. Boston, MA: Houghton Mifflin Company, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Galasso, Francis S. Structure and Properties of Inorganic Solids. Oxford: Pergamon Press, 1970.

Ghosh, Dulal C., and Kartick Gupta. "A New Scale Of Electronegativity Of 54 Elements Of Periodic Table Based On Polarizability Of Atoms." Journal of Theoretical and Computational Chemistry, volume 5, number 4, 2006, pp. 895–911. doi:10.1142/S0219633606002726

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Höhne, G. W. H., W. F. Hemminger, and H.-J. Flammersheim. Differential Scanning Calorimetry, 2nd edition. Berlin: Springer–Verlag, 2003.

Horvath, A. L. "Critical Temperature of Elements and the Periodic System." Journal of Chemical Education, volume 50, number 5, 1973, pp. 335–336. doi:10.1021/ed050p335

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

International Labour Organization (ILO). International Chemical Safety Card for Tin (Powder). http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc15/icsc1535.htm. Accessed on May 4, 2010.

Jensen, J. E., R. B. Stewart, W. A Tuttle, H. Brechna, and A. G. Prodell, editors. Brookhaven National Laboratory Selected Cryogenic Data Notebook. BNL 10200-R, Vol. 1, Brookhaven National Laboratory, August 1980.

King, H. W. "Pressure-Dependent Allotropic Structures of the Elements." Bulletin of Alloy Phase Diagrams, volume 4, number 4, 1983, pp. 449–450. doi:10.1007/BF02868110

King, H. W. "Temperature-Dependent Allotropic Structures of the Elements." Bulletin of Alloy Phase Diagrams, volume 3, number 2, 1982, pp. 275–276. doi:10.1007/BF02892394

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Kittel, Charles. Introduction to Solid State Physics, 5th edition. New York: John Wiley & Sons, Inc, 1976.

Krause, M. O. "Atomic Radiative and Radiationless Yields for K and L Shells." Journal of Physical and Chemical Reference Data, volume 8, number 2, 1979, pp. 307–327.

Li, Y.-H., and J. E. Schoonmaker. "Chemical Composition and Mineralogy of Marine Sediments." pp. 1–36 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Madelung, Otfried, editor. Semiconductors — Basic Data, 2nd edition. Berlin: Springer–Verlag, 1996.

Mann, Joseph B., Terry L. Meek, and Leland C. Allen. "Configuration Energies of the Main Group Elements." Journal of the American Chemical Society, volume 122, number 12, 2000, pp. 2780–2783. doi:10.1021/ja992866e

Manuel, O., editor. Origin of Elements in the Solar System: Implications of Post-1957 Observations. New York: Kluwer Academic Publishers, 2000.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Moore, Charlotte E. Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra. Washington, D.C.: National Bureau of Standards, 1970.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Tin (Powder). http://www.cdc.gov/niosh/ipcsneng/neng1535.html. Accessed on May 4, 2010.

National Institute for Occupational Safety and Health (NIOSH). The Registry of Toxic Effects of Chemical Substances for Tin. http://www.cdc.gov/niosh-rtecs/xp6fb1c0.html. Accessed on May 5, 2010.

Nicholas, J. V., and D. R. White. "Temperature." pp. 8–41 in Measurement of the Thermodynamic Properties of Single Phases. Edited by A. R. H. Goodwin, W. A. Wakeham, and K. N. Marsh. Amsterdam: Elsevier Science, 2003.

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Oxtoby, David W., H. P. Gillis, and Alan Campion. Principles of Modern Chemistry, 6th edition. Belmont, CA: Thomson Brooks/Cole, 2008.

Palme, H., and H. Beer. "Meteorites and the Composition of the Solar Photosphere." pp. 204–206 in Landolt–Börnstein—Group VI: Astronomy and Astrophysics. Edited by H. H. Voigt. New York: Springer–Verlag, 1993. doi:10.1007/10057790_59

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pearson, Ralph G. "Absolute Electronegativity and Hardness: Application to Inorganic Chemistry." Inorganic Chemistry, volume 27, number 4, 1988, pp 734–740. doi:10.1021/ic00277a030

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Preston-Thomas, H. "The International Temperature Scale of 1990 (ITS-90)." Metrologia, volume 27, number 1, 1990, pp. 3–10. doi:10.1088/0026-1394/27/1/002

Prohaska, Thomas, Johanna Irrgeher, Jacqueline Benefield, John K. Böhlke, Lesley A. Chesson, Tyler B. Coplen, Tiping Ding, Philip J. H. Dunn, Manfred Gröning, Norman E. Holden, Harro A. J. Meijer, Heiko Moossen, Antonio Possolo, Yoshio Takahashi, Jochen Vogl, Thomas Walczyk, Jun Wang, Michael E. Wieser, Shigekazu Yoneda, Xiang-Kun Zhu, and Juris Meija. "Standard Atomic Weights of the Elements 2021 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 94, number 5, 2022, pp. 573–600. doi:10.1515/pac-2019-0603

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Pyykkö, Pekka, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii." Chemistry - A European Journal, volume 11, number 12, 2005, pp. 3511–3520. doi:10.1002/chem.200401299

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sanderson, R. T. Simple Inorganic Substances. Malabar, FL: Robert E. Krieger Publishing Co., Inc., 1989.

Sanderson, R. T. "Principles of Electronegativity: Part I. General Nature." Journal of Chemical Education, volume 65, number 2, 1988, pp. 112–118. doi:10.1021/ed065p112

Sanderson, R. T. Polar Covalence. New York: Academic Press, Inc., 1983.

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Scheer, Michael, Rene C. Bilodeau, Cicely A. Brodie, and Harold K. Haugen. "Systematic Study of the Stable States of C-, Si-, Ge-, and Sn- via Infrared Laser Spectroscopy." Physical Review A, volume 58, number 4, 1998, pp. 2844–2856. doi:10.1103/PhysRevA.58.2844

Scientific Group Thermodata Europe (SGTE). Pure Substances: Part 1—Elements and Compounds from AgBr to Ba3N2. Edited by I. Hurtado and D. Neuschütz. Berlin: Springer-Verlag, 1999. doi:10.1007/10652891_3

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Stewart, G. R. "Measurement of low-temperature specific heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Styrkas, A. D. "Preparation of Shaped Gray Tin Crystals." Inorganic Materials, volume 41, number 6, 2005, pp. 580–584. doi:10.1007/s10789-005-0173-2

Styrkas, A. D. "Growth of Gray Tin Crystals." Inorganic Materials, volume 39, number 7, 2003, pp. 683–686. doi:10.1023/A:1024527523260

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Wagman, Donald D., William H. Evans, Vivian B. Parker, Richard H. Schumm, Iva Halow, Sylvia M. Bailey, Kenneth L. Churney, and Ralph L. Nuttall. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 11, supplement 2, 1982, pp. 2–1 to 2–392.

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Wittig, Jörg. "Die Supraleitung von Zinn und Blei unter sehr hohem Druck." Zeitschrift für Physik A Hadrons and Nuclei, volume 195, number 2, 1966, pp. 228–238. doi:10.1007/BF01328890

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.

Heaven's Boulevard astronomical sky image for any location, date, and time. Personalize with a picture and message. Great gift for birthdays, anniversaries, or any special event. Learn more (Link leaves KnowledgeDoor website)