Lead

Lead Navigation

Other Elements

By Name

By Symbol

By Number

Solutions manuals and the Numerari scientific calculator from KnowledgeDoor Learn more about our solutions manuals Learn
more about Numerari

Quantity

Lead Quick Reference

Click button to see citations

Notes

Symbol

Pb

Atomic Number

82

Atomic Weight

Rounded

207.2

for regular calculations

Standard

207.2 ± 0.1

for precise calculations

Oxidation States

4

less common with disagreement

2

more common with disagreement

Pauling Electronegativity

oxidation state: 4

2.33

oxidation state: 2

1.87

Electron Configuration

Orbital Occupancy

[Xe] 4f14 5d10 6s2 6p2

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s2 4f14 5d10 6p2

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

3P0

see expanded configuration ...

Ionization Energies

I   (1)

 7.41663 eV

II  (2)

15.03248 eV

III (3)

31.9373 eV 

IV  (4)

42.32 eV   

V   (5)

68.8 eV    

Electron Affinity

0.364 ± 0.008 eV

 2940 ± 60 cm-1 

Density

liquid, 923.15 K

10.265 g/ml 

solid, 25 °C

11.300 g/cm3

Molar Volume

solid, 298 K, 1 atm

18.26 cm3/mol

Melting Point

1 atm

600.612 K

ITS-90 first-quality, secondary reference point (freezing point)

Boiling Point

1 atm

2022.15 K

Thermal Conductivity

solid

400 K

34.0 W/(m K)

300 K

35.3 W/(m K)

298.2 K

35.3 W/(m K)

273.2 K

35.6 W/(m K)

200 K

36.7 W/(m K)

see all 45 conductivities ...

Pyykkö Covalent Radius

single bond

144 pm

double bond

135 pm

triple bond

137 pm

Atomic Radius

175 pm

Enthalpy of Fusion

1 atm

5.121 kJ/mol

Enthalpy of Vaporization

1 atm

179.4 kJ/mol

Quantity

Lead Atomic Structure

Notes

Ionization Energies

I   (1)

 7.41663 eV

II  (2)

15.03248 eV

III (3)

31.9373 eV 

IV  (4)

42.32 eV   

V   (5)

68.8 eV    

Electron Affinity

0.364 ± 0.008 eV

 2940 ± 60 cm-1 

Electron Binding Energies

K    (1s)

88005 eV  

LI   (2s)

15861 eV  

LII  (2p1/2)

15200 eV  

LIII (2p3/2)

13035 eV  

see all 21 energies ...

Electron Configuration

Orbital Occupancy

[Xe] 4f14 5d10 6s2 6p2

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s2 4f14 5d10 6p2

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

3P0

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

80.4195

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

80.4195

Zeff = ζ × n

2s

Orbital Exponent

30.2150

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

60.4300

Zeff = ζ × n

see all 15 effective nuclear charges ...

Screening Percentage

83.6%

Fluorescence Yields

ωK

0.963

ωL1

0.128

ωL2

0.397

ωL3

0.343

Coster-Kronig Yields

F12

0.066

F13

0.62 

F23

0.119

Quantity

Lead Physical Properties

Notes

Density

liquid, 923.15 K

10.265 g/ml 

solid, 25 °C

11.300 g/cm3

Molar Mass

Rounded

207.2 g/mol

for regular calculations

Standard

207.2 ± 0.1 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

18.26 cm3/mol

Physical Form

soft silvery-gray metal

Linear Thermal Expansion Coefficient

25 °C

28.9×10-6 K-1

293 K

29×10-6 K-1

280 K

28.9×10-6 K-1

273 K

28.8×10-6 K-1

260 K

28.5×10-6 K-1

see all 23 coefficients ...

Speed of Sound

solid

room temperature, rolled, longitudinal wave

1960 m/s

room temperature, rolled, shear wave

 690 m/s

room temperature, rolled, extensional wave

1210 m/s

room temperature, annealed, extensional wave

1190 m/s

20 °C

longitudinal wave

2160 m/s

shear wave

 700 m/s

288 K to 293 K

1260 m/s

Specific Gravity

68 °F, water at 4 °C (39.2 °F)

11.34 

20 °C, water at 20 °C

11.337

Young's Modulus

16.1 GPa

Poisson's Ratio

0.440

Electrical Resistivity

solid, 295 K

21.0×10-8 Ohm m

Contact Potential

3.94 eV

Photoelectric Work Function

4.05 eV

Superconducting Transition Temperature

7.1997 K

ITS-90 first-quality, secondary reference point

Superconducting Critical Magnetic Field at Absolute Zero

803×10-4 T

Superconducting Energy Gap

0 K

27.3×10-4 eV

Mineralogical Hardness

1.5

Isothermal Bulk Modulus

300 K

43.0 GPa

Isothermal Compressibility

300 K

0.0233 GPa-1

Gram Atomic Volume

18 cm3

Quantity

Lead Atomic Interaction

Notes

Oxidation States

4

less common with disagreement

2

more common with disagreement

Pauling Electronegativity

oxidation state: 4

2.33

oxidation state: 2

1.87

Mulliken-Jaffe Electronegativity

oxidation state: 4, hybridsp3

2.41

oxidation state: 2, orbitalp

1.16

Sanderson Electronegativity

oxidation state: 4

2.291

oxidation state: 2

1.92

Allred-Rochow Electronegativity

1.55

Configuration Energy

electron volt units

10.97 eV

Pauling units

 1.854  

Allred Electronegativity

oxidation state: 4

2.33

Nagle Electronegativity

1.76

Pearson Absolute Electronegativity

3.90 eV

Smith Electronegativity

oxidation state: 4

2.15

oxidation state: 2

1.7

Free Electron Fermi Surface Parameters

300 K

electron concentration

13.20×1022 cm-3

radius parameter

2.30

fermi wavevector

1.57×108 cm-1

fermi velocity

1.82×108 cm/s

fermi energy

9.37 eV

fermi temperature

10.87×104 K

Chemical Hardness

3.53 eV

Cohesive Energy

per mole

196 kJ/mol    

per atom

  2.03 eV/atom

Quantity

Lead Thermodynamics

Notes

Melting Point

1 atm

600.612 K

ITS-90 first-quality, secondary reference point (freezing point)

Boiling Point

1 atm

2022.15 K

Thermal Conductivity

solid

400 K

34.0 W/(m K)

300 K

35.3 W/(m K)

298.2 K

35.3 W/(m K)

273.2 K

35.6 W/(m K)

200 K

36.7 W/(m K)

see all 45 conductivities ...

Critical Point

5400 K

Vapor Pressure

1754 °C

100 kPa

1387 °C

10 kPa

1139 °C

1 kPa

see all 16 pressures ...

Enthalpy of Fusion

1 atm

5.121 kJ/mol

Enthalpy of Vaporization

1 atm

179.4 kJ/mol

Isobaric Molar Heat Capacity

298.15 K, 1 bar

26.84 J/(mol K)

Isobaric Specific Heat Capacity

298.15 K, 1 bar

0.130 J/(g K)

Electronic Heat Capacity Coefficient

2.99 mJ/(mol K2)

Debye Temperature

Low Temperature Limit ( 0 K )

105 K

Room Temperature ( 298 K )

 87 K

Quantity

Lead Identification

Notes

CAS Number

7439-92-1

ICSC Number

powder

0052

RTECS Number

OF7525000

Quantity

Lead Atomic Size

Notes

Atomic Radius

175 pm

Orbital Radius

121.5 pm

Pyykkö Covalent Radius

single bond

144 pm

double bond

135 pm

triple bond

137 pm

Cordero Covalent Radius

146 pm

Shannon-Prewitt Crystal Radius

ion charge: +2

coordination number: 4, pyramidal

112 pm  

coordination number: 6

133 pm  

coordination number: 7

137 pm  

coordination number: 8

143 pm  

coordination number: 9

149 pm  

coordination number: 10

154 pm  

coordination number: 11

159 pm  

coordination number: 12

163 pm  

ion charge: +4

coordination number: 4

 79 pm  

coordination number: 5

 87 pm  

coordination number: 6

 91.5 pm

coordination number: 8

108 pm  

Shannon-Prewitt Effective Ionic Radius

ion charge: +2

coordination number: 4, pyramidal

 98 pm  

coordination number: 6

119 pm  

coordination number: 7

123 pm  

coordination number: 8

129 pm  

coordination number: 9

135 pm  

coordination number: 10

140 pm  

coordination number: 11

145 pm  

coordination number: 12

149 pm  

ion charge: +4

coordination number: 4

 65 pm  

coordination number: 5

 73 pm  

coordination number: 6

 77.5 pm

coordination number: 8

 94 pm  

Pauling Empirical Crystal Radius

ion charge: +4

 84 pm

ion charge: +2

120 pm

Pauling Univalent Radius

ion charge: +1

106 pm

Batsanov Crystallographic Van Der Waals Radius

2.3×102 pm

Batsanov Equilibrium Van Der Waals Radius

253 pm

Bondi Van Der Waals Radius

202 pm

Slater Atomic-Ionic Radius

180 pm

Quantity

Lead Crystal Structure

Notes

Allotropes

allotrope

α-lead

symbol

αPb

alternate symbol

Pb-I

allotrope

β-lead

symbol

βPb

alternate symbol

Pb-II

Nearest Neighbor Distance

300 K, 1 atm

350 pm

Atomic Concentration

300 K, 1 atm

3.30×1022 cm-3

Quantity

Lead History

Notes

Discovery

date of discovery

circa 1000 BC

discoverer

unknown

location of discovery

unknown

Origin of Element Name

origin

lead

origin description

word—Anglo-Saxon

Origin of Element Symbol

symbol: Pb

origin

plumbum

origin description

word—Latin for lead

U.S. Towns Named After Elements

Lead, South Dakota

Leadville, Colorado

Formerly Used or Proposed Element Names and Symbols

symbol

P

Quantity

Lead Abundances

Notes

Earth's Crust

1.4×101 ppm

Earth's Mantle

185 ppb

primitive mantle

Earth's Core

0.4 ppm

Bulk Earth

0.23 ppm

Ocean Water

3×10-5 ppm

Metalliferous Ocean Sediment

Basal

100 ppm

Ridge

152 ppm

River Water

0.003 ppm

U.S. Coal

11 ppm

Human Body

120 mg

based on a 70 kg "reference man"

Human Bone

3.6 ppm to 30 ppm

Human Hair

3 ppm to 70 ppm

Human Kidney

1.2 ppm to 6.8 ppm

Human Liver

3 ppm to 12 ppm

Human Muscle

0.23 ppm to 3.3 ppm

Human Nail

14 ppm to 170 ppm

Ferns

2.3 ppm

Fungi

0.2 ppm to 40 ppm

Solar System

3.15

number of atoms for every 106 atoms of silicon

Sun

1.95 ± 0.08

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Meteorites

2.06 ± 0.04

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Quantity

Lead Nomenclature

Notes

Element Names in Other Languages

French

plomb

German

Blei

Italian

piombo

Spanish

plomo

Portuguese

chumbo

Anions or Anionic Substituent Groups

plumbide

Cations or Cationic Substituent Groups

lead (general)

Pb2+, lead(2+)

Pb4+, lead(4+)

Ligands

plumbido

Heteroatomic Anion

plumbate

'a' Term—Substitutive Nomenclature

plumba

'y' Term—Chains and Rings Nomenclature

plumby

References    (Click the button next to a value above to see complete citation information for that entry)

Allred, A. L. "Electronegativity Values from Thermochemical Data." Journal of Inorganic and Nuclear Chemistry, volume 17, number 3-4, 1961, pp. 215–221. doi:10.1016/0022-1902(61)80142-5

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Andersen, T., H. K. Haugen, and H. Hotop. "Binding Energies in Atomic Negative Ions: III." Journal of Physical and Chemical Reference Data, volume 28, number 6, 1999, pp. 1511–1533.

Ball, David W. "Elemental Etymology: What's in a Name?" Journal of Chemical Education, volume 62, number 9, 1985, pp. 787–788. doi:10.1021/ed062p787

Barsan, Michael E., editor. NIOSH Pocket Guide to Chemical Hazards. Cincinnati, Ohio: NIOSH Publications, 2007.

Batsanov, S. S. "Van der Waals Radii of Elements." Inorganic Materials, volume 37, number 9, 2001, pp. 871–885. See abstract

Bedford, R. E., G. Bonnier, H. Maas, and F. Pavese. "Recommended Values of Temperature on the International Temperature Scale of 1990 for a Selected Set of Secondary Reference Points." Metrologia, volume 33, number 2, 1996, pp. 133–154. doi:10.1088/0026-1394/33/2/3

Bondi, A. "Van der Waals Volumes and Radii." The Journal of Physical Chemistry, volume 68, number 3, 1964, pp. 441–451. doi:10.1021/j100785a001

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Bratsch, Steven G. "Revised Mulliken Electronegativities: I. Calculation and Conversion to Pauling Units." Journal of Chemical Education, volume 65, number 1, 1988, pp. 34–41. doi:10.1021/ed065p34

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells. Part II: The L1 Subshell Revisited." Atomic Data and Nuclear Data Tables, volume 95, number 1, 2009, pp. 115–124. doi:10.1016/j.adt.2008.08.002

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells." Atomic Data and Nuclear Data Tables, volume 85, number 2, 2003, pp. 291–315. doi:10.1016/S0092-640X(03)00059-7

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Chauvin, Remi. "Explicit Periodic Trend of van der Waals Radii." The Journal of Physical Chemistry, volume 96, number 23, 1992, pp. 9194–9197. doi:10.1021/j100202a023

Clementi, E., D. L. Raimondi, and W. P. Reinhardt. "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons." Journal of Chemical Physics, volume 47, number 4, 1967, pp. 1300–1307. doi:10.1063/1.1712084

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

Cronan, D. S. "Basal Metalliferous Sediments from the Eastern Pacific." Geological Society of America Bulletin, volume 87, number 6, 1976, pp. 928–934. doi:10.1130/0016-7606(1976)87<928:BMSFTE>2.0.CO;2

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Ebbing, Darrell D., and Steven D. Gammon. General Chemistry, 8th edition. Boston, MA: Houghton Mifflin Company, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Galasso, Francis S. Structure and Properties of Inorganic Solids. Oxford: Pergamon Press, 1970.

Green, Don W., editor. Perry's Chemical Engineers' Handbook, 8th edition. New York: The McGraw-Hill Companies, Inc., 2008.

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Höhne, G. W. H., W. F. Hemminger, and H.-J. Flammersheim. Differential Scanning Calorimetry, 2nd edition. Berlin: Springer–Verlag, 2003.

Horvath, A. L. "Critical Temperature of Elements and the Periodic System." Journal of Chemical Education, volume 50, number 5, 1973, pp. 335–336. doi:10.1021/ed050p335

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

International Labour Organization (ILO). International Chemical Safety Card for Lead. http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc00/icsc0052.htm. Accessed on May 4, 2010.

Jensen, J. E., R. B. Stewart, W. A Tuttle, H. Brechna, and A. G. Prodell, editors. Brookhaven National Laboratory Selected Cryogenic Data Notebook. BNL 10200-R, Vol. 1, Brookhaven National Laboratory, August 1980.

Jr., Elbert J. Little,, and Mark M. Jones. "A Complete Table of Electronegativities." Journal of Chemical Education, volume 37, number 5, 1960, pp. 231–233. doi:10.1021/ed037p231

King, H. W. "Pressure-Dependent Allotropic Structures of the Elements." Bulletin of Alloy Phase Diagrams, volume 4, number 4, 1983, pp. 449–450. doi:10.1007/BF02868110

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Kittel, Charles. Introduction to Solid State Physics, 5th edition. New York: John Wiley & Sons, Inc, 1976.

Li, Y.-H., and J. E. Schoonmaker. "Chemical Composition and Mineralogy of Marine Sediments." pp. 1–36 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Mann, Joseph B., Terry L. Meek, and Leland C. Allen. "Configuration Energies of the Main Group Elements." Journal of the American Chemical Society, volume 122, number 12, 2000, pp. 2780–2783. doi:10.1021/ja992866e

Manuel, O., editor. Origin of Elements in the Solar System: Implications of Post-1957 Observations. New York: Kluwer Academic Publishers, 2000.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Moore, Charlotte E. Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra. Washington, D.C.: National Bureau of Standards, 1970.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Lead. http://www.cdc.gov/niosh/ipcsneng/neng0052.html. Accessed on May 4, 2010.

National Institute for Occupational Safety and Health (NIOSH). The Registry of Toxic Effects of Chemical Substances for Lead. http://www.cdc.gov/niosh-rtecs/of72d288.html. Accessed on May 5, 2010.

Nicholas, J. V., and D. R. White. "Temperature." pp. 8–41 in Measurement of the Thermodynamic Properties of Single Phases. Edited by A. R. H. Goodwin, W. A. Wakeham, and K. N. Marsh. Amsterdam: Elsevier Science, 2003.

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Oxtoby, David W., H. P. Gillis, and Alan Campion. Principles of Modern Chemistry, 6th edition. Belmont, CA: Thomson Brooks/Cole, 2008.

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pearson, Ralph G. "Absolute Electronegativity and Hardness: Application to Inorganic Chemistry." Inorganic Chemistry, volume 27, number 4, 1988, pp 734–740. doi:10.1021/ic00277a030

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Pyykkö, Pekka, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii." Chemistry - A European Journal, volume 11, number 12, 2005, pp. 3511–3520. doi:10.1002/chem.200401299

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sanderson, R. T. Simple Inorganic Substances. Malabar, FL: Robert E. Krieger Publishing Co., Inc., 1989.

Sanderson, R. T. "Principles of Electronegativity: Part I. General Nature." Journal of Chemical Education, volume 65, number 2, 1988, pp. 112–118. doi:10.1021/ed065p112

Sanderson, R. T. Polar Covalence. New York: Academic Press, Inc., 1983.

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Scientific Group Thermodata Europe (SGTE). Pure Substances: Part 1—Elements and Compounds from AgBr to Ba3N2. Edited by I. Hurtado and D. Neuschütz. Berlin: Springer-Verlag, 1999. doi:10.1007/10652891_3

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Stewart, G. R. "Measurement of low-temperature specific heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Wieser, Michael E., and Tyler B. Coplen. "Atomic weights of the elements 2009 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 83, number 2, 2011, pp. 359–396. doi:10.1351/PAC-REP-10-09-14

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.