Terbium

Terbium Navigation

Other Elements

By Name

By Symbol

By Number

Solutions manuals and the Numerari scientific calculator from KnowledgeDoor Learn more about our solutions
manuals Learn more about Numerari

Quantity

Terbium Quick Reference

Click button to see citations

Notes

Symbol

Tb

Atomic Number

65

Atomic Weight

Rounded

158.9

for regular calculations

Standard

158.92535 ± 0.00002

for precise calculations

Oxidation States

4

less common

3

more common

1

less common

Electron Configuration

Orbital Occupancy

[Xe] 4f9 6s2

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s2 4f9

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

6H15/2

see expanded configuration ...

Ionization Energies

I   (1)

 5.8638 eV     

II  (2)

11.52 eV       

III (3)

21.91 ± 0.10 eV

IV  (4)

39.37 ± 0.10 eV

Density

liquid, 1629.15 K

7.650 g/ml 

solid, 25 °C

8.230 g/cm3

Molar Volume

solid, 298 K, 1 atm

19.30 cm3/mol

Melting Point

1624 ± 5 K

Boiling Point

1 atm

3503.15 K

Thermal Conductivity

solid

300 K

polycrystalline

11.1 W/(m K) 

parallel to c-axis

14.8 W/(m K) 

perpendicular to c-axis

 9.59 W/(m K)

273.2 K

polycrystalline

10.4 W/(m K) 

parallel to c-axis

13.8 W/(m K) 

perpendicular to c-axis

 9.00 W/(m K)

see all 54 conductivities ...

Pyykkö Covalent Radius

single bond

168 pm

double bond

135 pm

Atomic Radius

176 pm

Enthalpy of Fusion

1 atm

16.3 kJ/mol

Enthalpy of Vaporization

1 atm

391 kJ/mol

Quantity

Terbium Atomic Structure

Notes

Ionization Energies

I   (1)

 5.8638 eV     

II  (2)

11.52 eV       

III (3)

21.91 ± 0.10 eV

IV  (4)

39.37 ± 0.10 eV

Electron Binding Energies

K    (1s)

51996 eV  

LI   (2s)

 8708 eV  

LII  (2p1/2)

 8252 eV  

LIII (2p3/2)

 7514 eV  

see all 19 energies ...

Electron Configuration

Orbital Occupancy

[Xe] 4f9 6s2

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s2 4f9

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

6H15/2

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

63.7261

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

63.7261

Zeff = ζ × n

2s

Orbital Exponent

23.9861

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

47.9722

Zeff = ζ × n

see all 13 effective nuclear charges ...

Screening Percentage

91.3%

Fluorescence Yields

ωK

0.935

ωL1

0.107

ωL2

0.186

ωL3

0.175

Coster-Kronig Yields

F12

0.182

F13

0.285

F23

0.148

Quantity

Terbium Physical Properties

Notes

Density

liquid, 1629.15 K

7.650 g/ml 

solid, 25 °C

8.230 g/cm3

Molar Mass

Rounded

158.9 g/mol

for regular calculations

Standard

158.92535 ± 0.00002 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

19.30 cm3/mol

Physical Form

silvery metal

Linear Thermal Expansion Coefficient

25 °C

10.3×10-6 K-1

Speed of Sound

solid, 293 K

2620 m/s

calculated value

Young's Modulus

α-terbium

55.7 GPa

Poisson's Ratio

α-terbium

0.261

Electrical Resistivity

solid, 295 K

111×10-8 Ohm m

Vickers Hardness

cast, 293 K

863 MN/m2

Isothermal Bulk Modulus

300 K

39.9 GPa

Isothermal Compressibility

300 K

0.0251 GPa-1

Gram Atomic Volume

19 cm3

Quantity

Terbium Atomic Interaction

Notes

Oxidation States

4

less common

3

more common

1

less common

Allred-Rochow Electronegativity

1.10

Nagle Electronegativity

1.08

Smith Electronegativity

oxidation state: 4

1.7

oxidation state: 3

1.25

Cohesive Energy

per mole

391 kJ/mol    

per atom

  4.05 eV/atom

Quantity

Terbium Thermodynamics

Notes

Melting Point

1624 ± 5 K

Boiling Point

1 atm

3503.15 K

Thermal Conductivity

solid

300 K

polycrystalline

11.1 W/(m K) 

parallel to c-axis

14.8 W/(m K) 

perpendicular to c-axis

 9.59 W/(m K)

273.2 K

polycrystalline

10.4 W/(m K) 

parallel to c-axis

13.8 W/(m K) 

perpendicular to c-axis

 9.00 W/(m K)

see all 54 conductivities ...

Critical Point

8470 K

Vapor Pressure

3218 °C

100 kPa

2640 °C

10 kPa

2232 °C

1 kPa

1928 °C

100 Pa

1706.1 °C

10 Pa

1516.1 °C

1 Pa

Curie Point

221 K

Neel Point

230 K

Enthalpy of Fusion

1 atm

16.3 kJ/mol

Enthalpy of Vaporization

1 atm

391 kJ/mol

Isobaric Molar Heat Capacity

298.15 K, 1 bar

28.91 J/(mol K)

Isobaric Specific Heat Capacity

298.15 K, 1 bar

0.182 J/(g K)

Electronic Heat Capacity Coefficient

4.1 mJ/(mol K2)

Debye Temperature

Low Temperature Limit ( 0 K )

176 K

Room Temperature ( 298 K )

158 K

Quantity

Terbium Identification

Notes

CAS Number

7440-27-9

Quantity

Terbium Atomic Size

Notes

Atomic Radius

176 pm

Orbital Radius

177.5 pm

Pyykkö Covalent Radius

single bond

168 pm

double bond

135 pm

Cordero Covalent Radius

194 pm

Shannon-Prewitt Crystal Radius

ion charge: +3

coordination number: 6

106.3 pm

coordination number: 7

112 pm  

coordination number: 8

118.0 pm

coordination number: 9

123.5 pm

ion charge: +4

coordination number: 6

 90 pm  

coordination number: 8

102 pm  

Shannon-Prewitt Effective Ionic Radius

ion charge: +3

coordination number: 6

 92.3 pm

coordination number: 7

 98 pm  

coordination number: 8

104.0 pm

coordination number: 9

109.5 pm

ion charge: +4

coordination number: 6

 76 pm  

coordination number: 8

 88 pm  

Pauling Empirical Crystal Radius

ion charge: +3

100 pm

Slater Atomic-Ionic Radius

175 pm

Quantity

Terbium Crystal Structure

Notes

Allotropes

allotrope

α'-terbium

symbol

α'Tb

allotrope

α-terbium

symbol

αTb

allotrope

β-terbium

symbol

βTb

allotrope

γ-terbium

symbol

γTb

alternate symbol

Tb-II

Nearest Neighbor Distance

300 K, 1 atm

352 pm

Atomic Concentration

300 K, 1 atm

3.22×1022 cm-3

Quantity

Terbium History

Notes

Discovery

date of discovery

1843

discoverer

Carl Gustav Mosander

birth

September 10, 1797

death

October 15, 1858

location of discovery

Stockholm, Sweden

Origin of Element Name

origin

Ytterby

origin description

place—A city in Sweden

Origin of Element Symbol

symbol: Tb

origin

terbium

origin description

element name

Quantity

Terbium Abundances

Notes

Earth's Crust

1.2 ppm

Earth's Mantle

105 ppb

primitive mantle

Bulk Earth

0.067 ppm

Ocean Water

1.4×10-7 ppm

U.S. Coal

0.30 ppm

Solar System

0.0603

number of atoms for every 106 atoms of silicon

Sun

-0.1 ± 0.3

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Meteorites

0.34 ± 0.04

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Quantity

Terbium Nomenclature

Notes

Element Names in Other Languages

French

terbium

German

Terbium

Italian

terbio

Spanish

terbio

Portuguese

térbio

Anions or Anionic Substituent Groups

terbide

Cations or Cationic Substituent Groups

terbium

Ligands

terbido

Heteroatomic Anion

terbate

'a' Term—Substitutive Nomenclature

terba

'y' Term—Chains and Rings Nomenclature

terby

References    (Click the button next to a value above to see complete citation information for that entry)

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells. Part II: The L1 Subshell Revisited." Atomic Data and Nuclear Data Tables, volume 95, number 1, 2009, pp. 115–124. doi:10.1016/j.adt.2008.08.002

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells." Atomic Data and Nuclear Data Tables, volume 85, number 2, 2003, pp. 291–315. doi:10.1016/S0092-640X(03)00059-7

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Chuah, Donald G. S., and R. Ratnalingam. "Thermal Conductivities and Lorenz Functions of the Heavy Rare-Earth Metals Between 90 and 300 K." Journal of Low Temperature Physics, volume 14, number 3-4, 1974, pp. 257–276. doi:10.1007/BF00655333

Clementi, E., D. L. Raimondi, and W. P. Reinhardt. "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons." Journal of Chemical Physics, volume 47, number 4, 1967, pp. 1300–1307. doi:10.1063/1.1712084

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

Cox, P. A. The Elements: Their Origin, Abundance and Distribution. Oxford: Oxford University Press, 1989.

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Filyand, M. A., and E. I. Semenova. Handbook of the Rare Elements: Radioactive Elements and Rare Earth Elements, volume 3. Translated by Michael E. Alferieff. London: Oldbourne Book Co. Ltd., 1970.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Horvath, A. L. "Critical Temperature of Elements and the Periodic System." Journal of Chemical Education, volume 50, number 5, 1973, pp. 335–336. doi:10.1021/ed050p335

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

Ihde, Aaron J. The Development of Modern Chemistry. New York: Dover Publications, Inc., 1984.

Jr., Elbert J. Little,, and Mark M. Jones. "A Complete Table of Electronegativities." Journal of Chemical Education, volume 37, number 5, 1960, pp. 231–233. doi:10.1021/ed037p231

King, H. W. "Pressure-Dependent Allotropic Structures of the Elements." Bulletin of Alloy Phase Diagrams, volume 4, number 4, 1983, pp. 449–450. doi:10.1007/BF02868110

King, H. W. "Temperature-Dependent Allotropic Structures of the Elements." Bulletin of Alloy Phase Diagrams, volume 3, number 2, 1982, pp. 275–276. doi:10.1007/BF02892394

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Konings, Rudy J. M., and Ondrej Beneš. "The Thermodynamic Properties of the f-Elements and Their Compounds. I. The Lanthanide and Actinide Metals." Journal of Physical and Chemical Reference Data, volume 39, number 4, 2010, pp. 043102–1 to 043102–47. doi:10.1063/1.3474238

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Manuel, O., editor. Origin of Elements in the Solar System: Implications of Post-1957 Observations. New York: Kluwer Academic Publishers, 2000.

Marshall, James L. Discovery of the Elements: A Search for the Fundamental Principles of the Universe, 2nd edition. Boston, MA: Pearson Custom Publishing, 2002.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

Martin, W. C., Romuald Zalubas, and Lucy Hagan. Atomic Energy Levels—The Rare-Earth Elements. Washington, D.C.: National Bureau of Standards, 1978.

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Palme, H., and H. Beer. "Meteorites and the Composition of the Solar Photosphere." pp. 204–206 in Landolt–Börnstein—Group VI: Astronomy and Astrophysics. Edited by H. H. Voigt. New York: Springer–Verlag, 1993. doi:10.1007/10057790_59

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Ringnes, Vivi. "Origin of the Names of Chemical Elements." Journal of Chemical Education, volume 66, number 9, 1989, pp. 731–738. doi:10.1021/ed066p731

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Scientific Group Thermodata Europe (SGTE). Pure Substances: Part 1—Elements and Compounds from AgBr to Ba3N2. Edited by I. Hurtado and D. Neuschütz. Berlin: Springer-Verlag, 1999. doi:10.1007/10652891_3

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Stewart, G. R. "Measurement of low-temperature specific heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Wagman, Donald D., William H. Evans, Vivian B. Parker, Richard H. Schumm, Iva Halow, Sylvia M. Bailey, Kenneth L. Churney, and Ralph L. Nuttall. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 11, supplement 2, 1982, pp. 2–1 to 2–392.

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Weeks, Mary Elvira, and Henry M. Leicester. Discovery of the Elements, 7th edition. Easton, PA: Journal of Chemical Education, 1968.

Wieser, Michael E., and Tyler B. Coplen. "Atomic weights of the elements 2009 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 83, number 2, 2011, pp. 359–396. doi:10.1351/PAC-REP-10-09-14

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.