Ytterbium

Ytterbium Navigation

Other Elements

By Name

By Symbol

By Number

Solutions manuals and the Numerari scientific calculator from KnowledgeDoor Learn more about our solutions
manuals Learn more about Numerari

Quantity

Ytterbium Quick Reference

Click button to see citations

Notes

Symbol

Yb

Atomic Number

70

Atomic Weight

Rounded

173.1

for regular calculations

Standard

173.054 ± 0.005

for precise calculations

Oxidation States

3

more common

2

less common

Electron Configuration

Orbital Occupancy

[Xe] 4f14 6s2

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s2 4f14

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

1S0

see expanded configuration ...

Ionization Energies

I   (1)

 6.25416 eV    

II  (2)

12.176 eV      

III (3)

25.05 ± 0.03 eV

IV  (4)

43.56 ± 0.10 eV

Electron Affinity

-0.020 eV

Density

liquid, 1092.15 K

6.210 g/ml 

solid, 25 °C

6.900 g/cm3

Molar Volume

solid, 298 K, 1 atm

24.84 cm3/mol

Melting Point

1091 ± 10 K

Boiling Point

1 atm

1469.15 K

Thermal Conductivity

solid

400 K

34.1 W/(m K)

estimated

300 K

34.9 W/(m K)

estimated

298.2 K

34.9 W/(m K)

estimated

273.2 K

35.4 W/(m K)

estimated

200 K

38.4 W/(m K)

estimated

see all 15 conductivities ...

Pyykkö Covalent Radius

single bond

170 pm

double bond

129 pm

Atomic Radius

194 pm

Enthalpy of Fusion

1 atm

9.2 kJ/mol

Enthalpy of Vaporization

1 atm

159 kJ/mol

Quantity

Ytterbium Atomic Structure

Notes

Ionization Energies

I   (1)

 6.25416 eV    

II  (2)

12.176 eV      

III (3)

25.05 ± 0.03 eV

IV  (4)

43.56 ± 0.10 eV

Electron Affinity

-0.020 eV

Electron Binding Energies

K    (1s)

61332 eV  

LI   (2s)

10486 eV  

LII  (2p1/2)

 9978 eV  

LIII (2p3/2)

 8944 eV  

see all 19 energies ...

Electron Configuration

Orbital Occupancy

[Xe] 4f14 6s2

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s2 4f14

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

1S0

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

68.6389

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

68.6389

Zeff = ζ × n

2s

Orbital Exponent

25.8470

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

51.6940

Zeff = ζ × n

see all 13 effective nuclear charges ...

Screening Percentage

89.7%

Fluorescence Yields

ωK

0.947

ωL1

0.134

ωL2

0.243

ωL3

0.222

Coster-Kronig Yields

F12

0.142

F13

0.312

F23

0.14 

Quantity

Ytterbium Physical Properties

Notes

Density

liquid, 1092.15 K

6.210 g/ml 

solid, 25 °C

6.900 g/cm3

Molar Mass

Rounded

173.1 g/mol

for regular calculations

Standard

173.054 ± 0.005 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

24.84 cm3/mol

Physical Form

silvery metal

Linear Thermal Expansion Coefficient

25 °C

26.3×10-6 K-1

Speed of Sound

solid, 293 K

1590 m/s

calculated value

Young's Modulus

23.9 GPa

Poisson's Ratio

0.207

Electrical Resistivity

solid, 295 K

26.4×10-8 Ohm m

Vickers Hardness

cast, 293 K

206 MN/m2

Isothermal Bulk Modulus

300 K

13.3 GPa

Isothermal Compressibility

300 K

0.0752 GPa-1

Gram Atomic Volume

25 cm3

Quantity

Ytterbium Atomic Interaction

Notes

Oxidation States

3

more common

2

less common

Allred-Rochow Electronegativity

1.06

Nagle Electronegativity

1.13

Smith Electronegativity

oxidation state: 3

1.25

oxidation state: 2

1.0

Cohesive Energy

per mole

154 kJ/mol    

per atom

  1.60 eV/atom

Quantity

Ytterbium Thermodynamics

Notes

Melting Point

1091 ± 10 K

Boiling Point

1 atm

1469.15 K

Thermal Conductivity

solid

400 K

34.1 W/(m K)

estimated

300 K

34.9 W/(m K)

estimated

298.2 K

34.9 W/(m K)

estimated

273.2 K

35.4 W/(m K)

estimated

200 K

38.4 W/(m K)

estimated

see all 15 conductivities ...

Critical Point

4420 K

Vapor Pressure

1192 °C

100 kPa

993 °C

10 kPa

774 °C

1 kPa

637 °C

100 Pa

540 °C

10 Pa

463 °C

1 Pa

Enthalpy of Fusion

1 atm

9.2 kJ/mol

Enthalpy of Vaporization

1 atm

159 kJ/mol

Isobaric Molar Heat Capacity

298.15 K, 1 bar

26.74 J/(mol K)

Isobaric Specific Heat Capacity

298.15 K, 1 bar

0.155 J/(g K)

Electronic Heat Capacity Coefficient

2.9 mJ/(mol K2)

Debye Temperature

Low Temperature Limit ( 0 K )

118 K

Quantity

Ytterbium Identification

Notes

CAS Number

7440-64-4

Quantity

Ytterbium Atomic Size

Notes

Atomic Radius

194 pm

Orbital Radius

165.8 pm

Pyykkö Covalent Radius

single bond

170 pm

double bond

129 pm

Cordero Covalent Radius

187 pm

Shannon-Prewitt Crystal Radius

ion charge: +2

coordination number: 6

116 pm  

coordination number: 7

122 pm  

coordination number: 8

128 pm  

ion charge: +3

coordination number: 6

100.8 pm

coordination number: 7

106.5 pm

coordination number: 8

112.5 pm

coordination number: 9

118.2 pm

Shannon-Prewitt Effective Ionic Radius

ion charge: +2

coordination number: 6

102 pm  

coordination number: 7

108 pm  

coordination number: 8

114 pm  

ion charge: +3

coordination number: 6

 86.8 pm

coordination number: 7

 92.5 pm

coordination number: 8

 98.5 pm

coordination number: 9

104.2 pm

Pauling Empirical Crystal Radius

ion charge: +3

 94 pm

ion charge: +2

113 pm

Slater Atomic-Ionic Radius

175 pm

Quantity

Ytterbium Crystal Structure

Notes

Allotropes

allotrope

α-ytterbium

symbol

αYb

allotrope

β-ytterbium

symbol

βYb

allotrope

γ-ytterbium

symbol

γYb

Nearest Neighbor Distance

300 K, 1 atm

388 pm

Atomic Concentration

300 K, 1 atm

3.02×1022 cm-3

Quantity

Ytterbium History

Notes

Discovery

date of discovery

1878

discoverer

Jean-Charles Galissard de Marignac

birth

April 24, 1817

death

April 15, 1894

location of discovery

Geneva, Switzerland

Origin of Element Name

origin

Ytterby

origin description

place—A city in Sweden

Origin of Element Symbol

symbol: Yb

origin

ytterbium

origin description

element name

Formerly Used or Proposed Element Names and Symbols

name

neoytterbium

no matching symbol specified

name

aldebaranium

no matching symbol specified

Quantity

Ytterbium Abundances

Notes

Earth's Crust

3.2 ppm

Earth's Mantle

462 ppb

primitive mantle

Bulk Earth

0.30 ppm

Ocean Water

8×10-7 ppm

Metalliferous Ocean Sediment

Basal

13 ppm

Ridge

5.7 ppm

U.S. Coal

0.95 ppm

calculated from cerium and lanthanum data

Ferns

0.04 ppm to 0.6 ppm

Solar System

0.2479

number of atoms for every 106 atoms of silicon

Sun

1.08 ± 0.15

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Meteorites

0.95 ± 0.02

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Quantity

Ytterbium Nomenclature

Notes

Element Names in Other Languages

French

ytterbium

German

Ytterbium

Italian

itterbio

Spanish

yterbio

Portuguese

itérbio

Anions or Anionic Substituent Groups

ytterbide

Cations or Cationic Substituent Groups

ytterbium

Ligands

ytterbido

Heteroatomic Anion

ytterbate

'a' Term—Substitutive Nomenclature

ytterba

'y' Term—Chains and Rings Nomenclature

ytterby

References    (Click the button next to a value above to see complete citation information for that entry)

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells. Part II: The L1 Subshell Revisited." Atomic Data and Nuclear Data Tables, volume 95, number 1, 2009, pp. 115–124. doi:10.1016/j.adt.2008.08.002

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells." Atomic Data and Nuclear Data Tables, volume 85, number 2, 2003, pp. 291–315. doi:10.1016/S0092-640X(03)00059-7

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Clementi, E., D. L. Raimondi, and W. P. Reinhardt. "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons." Journal of Chemical Physics, volume 47, number 4, 1967, pp. 1300–1307. doi:10.1063/1.1712084

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

Cox, P. A. The Elements: Their Origin, Abundance and Distribution. Oxford: Oxford University Press, 1989.

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Dzuba, V. A., and G. F. Gribakin. "Yb- 6p1/2—Low-Lying Shape Resonance Rather than a Bound State." Journal of Physics B: Atomic, Molecular and Optical Physics, volume 31, number 11, 1998, pp. L483–L487. doi:10.1088/0953-4075/31/11/002

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Horvath, A. L. "Critical Temperature of Elements and the Periodic System." Journal of Chemical Education, volume 50, number 5, 1973, pp. 335–336. doi:10.1021/ed050p335

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

Ihde, Aaron J. The Development of Modern Chemistry. New York: Dover Publications, Inc., 1984.

Jr., Elbert J. Little,, and Mark M. Jones. "A Complete Table of Electronegativities." Journal of Chemical Education, volume 37, number 5, 1960, pp. 231–233. doi:10.1021/ed037p231

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Konings, Rudy J. M., and Ondrej Beneš. "The Thermodynamic Properties of the f-Elements and Their Compounds. I. The Lanthanide and Actinide Metals." Journal of Physical and Chemical Reference Data, volume 39, number 4, 2010, pp. 043102–1 to 043102–47. doi:10.1063/1.3474238

Li, Y.-H., and J. E. Schoonmaker. "Chemical Composition and Mineralogy of Marine Sediments." pp. 1–36 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Manuel, O., editor. Origin of Elements in the Solar System: Implications of Post-1957 Observations. New York: Kluwer Academic Publishers, 2000.

Marshall, James L. Discovery of the Elements: A Search for the Fundamental Principles of the Universe, 2nd edition. Boston, MA: Pearson Custom Publishing, 2002.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

Martin, W. C., Romuald Zalubas, and Lucy Hagan. Atomic Energy Levels—The Rare-Earth Elements. Washington, D.C.: National Bureau of Standards, 1978.

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Palme, H., and H. Beer. "Meteorites and the Composition of the Solar Photosphere." pp. 204–206 in Landolt–Börnstein—Group VI: Astronomy and Astrophysics. Edited by H. H. Voigt. New York: Springer–Verlag, 1993. doi:10.1007/10057790_59

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Ringnes, Vivi. "Origin of the Names of Chemical Elements." Journal of Chemical Education, volume 66, number 9, 1989, pp. 731–738. doi:10.1021/ed066p731

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Scientific Group Thermodata Europe (SGTE). Pure Substances: Part 1—Elements and Compounds from AgBr to Ba3N2. Edited by I. Hurtado and D. Neuschütz. Berlin: Springer-Verlag, 1999. doi:10.1007/10652891_3

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Stewart, G. R. "Measurement of low-temperature specific heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Wagman, Donald D., William H. Evans, Vivian B. Parker, Richard H. Schumm, Iva Halow, Sylvia M. Bailey, Kenneth L. Churney, and Ralph L. Nuttall. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 11, supplement 2, 1982, pp. 2–1 to 2–392.

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Weeks, Mary Elvira, and Henry M. Leicester. Discovery of the Elements, 7th edition. Easton, PA: Journal of Chemical Education, 1968.

Wieser, Michael E., and Tyler B. Coplen. "Atomic weights of the elements 2009 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 83, number 2, 2011, pp. 359–396. doi:10.1351/PAC-REP-10-09-14

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.