Chromium

Chromium Navigation

Other Elements

By Name

By Symbol

By Number

Solutions manuals and the Numerari scientific calculator from KnowledgeDoor Learn more about our solutions manuals Learn more about Numerari

Quantity

Chromium Quick Reference

Click button to see citations

Notes

Symbol

Cr

Atomic Number

24

Atomic Weight

Rounded

52.00

for regular calculations

Standard

51.9961 ± 0.0006

for precise calculations

Oxidation States

 6

more common with disagreement

 5

less common

 4

less common

 3

more common

 2

more common with disagreement

 1

less common

 0

less common

-1

less common

-2

less common

-3

less common

-4

less common

Pauling Electronegativity

oxidation state: 2

1.66

Electron Configuration

Orbital Occupancy

[Ar] 3d5 4s1

[Ar] represents the closed-shell electron configuration of argon

Orbital Filling Order

[Ar] 4s1 3d5

[Ar] represents the closed-shell electron configuration of argon

Term Symbol

7S3

see expanded configuration ...

Ionization Energies

I   (1)

 6.76651 eV    

II  (2)

16.4857 eV     

III (3)

30.96 ± 0.02 eV

IV  (4)

49.16 ± 0.05 eV

see all 24 energies ...

Electron Affinity

0.67584 ± 0.00012 eV

 5451.0 ± 1.0 cm-1  

Density

liquid

2223 K

6.00 ± 0.13 g/ml

2180.15 K

6.460 g/ml 

solid

2000 K

6.69 g/cm3 

1500 K

6.91 g/cm3 

1100 K

7.04 g/cm3 

400 K

7.20 g/cm3 

25 °C

7.150 g/cm3

see all 21 densities ...

Molar Volume

solid, 298 K, 1 atm

7.23 cm3/mol

Melting Point

1 bar

2130 ± 20 K

Boiling Point

1 atm

2944.15 K

Thermal Conductivity

solid

400 K

 90.9 W/(m K)

300 K

 93.7 W/(m K)

298.2 K

 93.9 W/(m K)

273.2 K

 96.5 W/(m K)

200 K

111 W/(m K)  

see all 49 conductivities ...

Pyykkö Covalent Radius

single bond

122 pm

double bond

111 pm

triple bond

103 pm

Atomic Radius

129 pm

Enthalpy of Fusion

1 atm

15.3 kJ/mol

Enthalpy of Vaporization

1 atm

348.78 kJ/mol

Quantity

Chromium Atomic Structure

Notes

Ionization Energies

I   (1)

 6.76651 eV    

II  (2)

16.4857 eV     

III (3)

30.96 ± 0.02 eV

IV  (4)

49.16 ± 0.05 eV

see all 24 energies ...

Electron Affinity

0.67584 ± 0.00012 eV

 5451.0 ± 1.0 cm-1  

Electron Binding Energies

K    (1s)

5989 eV  

LI   (2s)

 696.0 eV

LII  (2p1/2)

 583.8 eV

LIII (2p3/2)

 574.1 eV

see all 7 energies ...

Electron Configuration

Orbital Occupancy

[Ar] 3d5 4s1

[Ar] represents the closed-shell electron configuration of argon

Orbital Filling Order

[Ar] 4s1 3d5

[Ar] represents the closed-shell electron configuration of argon

Term Symbol

7S3

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

23.4138

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

23.4138

Zeff = ζ × n

2s

Orbital Exponent

 8.4919

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

16.984 

Zeff = ζ × n

see all 7 effective nuclear charges ...

Screening Percentage

80.4%

Fluorescence Yields

ωK

0.288  

ωL1

0.00071

ωL2

0.0037 

ωL3

0.0037 

Coster-Kronig Yields

F12

0.31

F13

0.57

Quantity

Chromium Physical Properties

Notes

Density

liquid

2223 K

6.00 ± 0.13 g/ml

2180.15 K

6.460 g/ml 

solid

2000 K

6.69 g/cm3 

1500 K

6.91 g/cm3 

1100 K

7.04 g/cm3 

400 K

7.20 g/cm3 

25 °C

7.150 g/cm3

see all 21 densities ...

Molar Mass

Rounded

52.00 g/mol

for regular calculations

Standard

51.9961 ± 0.0006 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

7.23 cm3/mol

Physical Form

blue-white metal

Linear Thermal Expansion Coefficient

25 °C

4.9×10-6 K-1

Speed of Sound

solid, 20 °C

longitudinal wave

6608 m/s

shear wave

4005 m/s

Specific Gravity

68 °F, water at 4 °C (39.2 °F)

7.14

Young's Modulus

279 GPa

Poisson's Ratio

0.210

Electrical Resistivity

solid, 295 K

12.9×10-8 Ohm m

Contact Potential

4.38 eV

Photoelectric Work Function

4.37 eV

Thermionic Work Function

4.60 eV

Mineralogical Hardness

8.5

Vickers Hardness

smelted in vacuum

293 K

1060 MN/m2

673 K

 687 MN/m2

see all 6 hardnesses ...

Isothermal Bulk Modulus

300 K

190.1 GPa

Isothermal Compressibility

300 K

0.00526 GPa-1

Gram Atomic Volume

7 cm3

Quantity

Chromium Atomic Interaction

Notes

Oxidation States

 6

more common with disagreement

 5

less common

 4

less common

 3

more common

 2

more common with disagreement

 1

less common

 0

less common

-1

less common

-2

less common

-3

less common

-4

less common

Pauling Electronegativity

oxidation state: 2

1.66

Sanderson Electronegativity

oxidation state: 6

3.37

oxidation state: 5

2.83

oxidation state: 4

2.29

oxidation state: 3

1.66

oxidation state: 2

1.24

Allred-Rochow Electronegativity

oxidation state: 3

1.56

Configuration Energy

electron volt units

9.77 eV

Pauling units

1.65   

Allred Electronegativity

oxidation state: 2

1.66

Ghosh-Gupta Electronegativity

3.2951 eV

Nagle Electronegativity

1.29

Pearson Absolute Electronegativity

3.72 eV

Smith Electronegativity

oxidation state: 4

2.05

oxidation state: 3

1.65

oxidation state: 2

1.65

Chemical Hardness

3.06 eV

Cohesive Energy

per mole

395 kJ/mol    

per atom

  4.10 eV/atom

Quantity

Chromium Thermodynamics

Notes

Melting Point

1 bar

2130 ± 20 K

Boiling Point

1 atm

2944.15 K

Thermal Conductivity

solid

400 K

 90.9 W/(m K)

300 K

 93.7 W/(m K)

298.2 K

 93.9 W/(m K)

273.2 K

 96.5 W/(m K)

200 K

111 W/(m K)  

see all 49 conductivities ...

Critical Point

4700 K

Vapor Pressure

2669 °C

100 kPa

2257 °C

10 kPa

1950 °C

1 kPa

1718 °C

100 Pa

1534 °C

10 Pa

1383 °C

1 Pa

Neel Point

strain-free single crystal

311 K

nanocrystalline

120 ± 10 K

Enthalpy of Fusion

1 atm

15.3 kJ/mol

Enthalpy of Vaporization

1 atm

348.78 kJ/mol

Isobaric Molar Heat Capacity

298.15 K, 1 bar

23.35 J/(mol K)

Isobaric Specific Heat Capacity

298.15 K, 1 bar

0.449 J/(g K)

Electronic Heat Capacity Coefficient

1.42 mJ/(mol K2)

Debye Temperature

Low Temperature Limit ( 0 K )

606 K

Room Temperature ( 298 K )

424 K

Quantity

Chromium Identification

Notes

CAS Number

7440-47-3

ICSC Number

0029

RTECS Number

GB4200000

Quantity

Chromium Atomic Size

Notes

Atomic Radius

129 pm

Orbital Radius

145.3 pm

Pyykkö Covalent Radius

single bond

122 pm

double bond

111 pm

triple bond

103 pm

Cordero Covalent Radius

139 pm

Shannon-Prewitt Crystal Radius

ion charge: +2, coordination number: 6

low spin

87 pm  

high spin

94 pm  

ion charge: +3, coordination number: 6

75.5 pm

ion charge: +4

coordination number: 4

55 pm  

coordination number: 6

69 pm  

ion charge: +5

coordination number: 4

48.5 pm

coordination number: 6

63 pm  

coordination number: 8

71 pm  

ion charge: +6

coordination number: 4

40 pm  

coordination number: 6

58 pm  

Shannon-Prewitt Effective Ionic Radius

ion charge: +2, coordination number: 6

low spin

73 pm  

high spin

80 pm  

ion charge: +3, coordination number: 6

61.5 pm

ion charge: +4

coordination number: 4

41 pm  

coordination number: 6

55 pm  

ion charge: +5

coordination number: 4

34.5 pm

coordination number: 6

49 pm  

coordination number: 8

57 pm  

ion charge: +6

coordination number: 4

26 pm  

coordination number: 6

44 pm  

Pauling Empirical Crystal Radius

ion charge: +4

56 pm

ion charge: +3

69 pm

ion charge: +2

84 pm

Pauling Univalent Radius

ion charge: +1

81 pm

Batsanov Crystallographic Van Der Waals Radius

205 pm

Batsanov Equilibrium Van Der Waals Radius

223 pm

Slater Atomic-Ionic Radius

140 pm

Quantity

Chromium Crystal Structure

Notes

Allotropes

allotrope

α-chromium

symbol

αCr

allotrope

α'-chromium

symbol

α'Cr

Nearest Neighbor Distance

300 K, 1 atm

250 pm

Atomic Concentration

300 K, 1 atm

8.33×1022 cm-3

Quantity

Chromium History

Notes

Discovery

date of discovery

1797

discoverer

Nicolas-Louis Vauquelin

birth

May 16, 1763

death

November 14, 1829

location of discovery

Paris, France

Origin of Element Name

origin

khroma

origin description

color—Greek for color

Origin of Element Symbol

symbol: Cr

origin

chromium

origin description

element name

Formerly Used or Proposed Element Names and Symbols

symbol

Ch

Quantity

Chromium Abundances

Notes

Earth's Crust

1.02×102 ppm

Earth's Mantle

2520 ppm

primitive mantle

Earth's Core

0.90%

Bulk Earth

4700 ppm

Ocean Water

0.0006 ppm

Metalliferous Ocean Sediment

Basal

15 ppm

Ridge

55 ppm

River Water

0.001 ppm

U.S. Coal

15 ppm

Human Body

14 mg

based on a 70 kg "reference man"

Human Bone

0.1 ppm to 33 ppm

Human Hair

0.13 ppm to 3.6 ppm

Human Kidney

0.05 ppm to 4.7 ppm

Human Liver

0.02 ppm to 3.3 ppm

Human Muscle

0.024 ppm to 0.84 ppm

Human Nail

6 ppm

Bacteria

4 ppm

Ferns

1.9 ppm

Fungi

2.6 ppm

Solar System

1.35×104

number of atoms for every 106 atoms of silicon

Sun

5.67 ± 0.03

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Meteorites

5.68 ± 0.01

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Halley's Comet

0.9 ± 0.2 atoms

number of atoms for every 100 atoms of magnesium

Quantity

Chromium Nomenclature

Notes

Element Names in Other Languages

French

chrome

German

Chrom

Italian

cromo

Spanish

cromo

Portuguese

crómio

Anions or Anionic Substituent Groups

chromide

Cations or Cationic Substituent Groups

chromium (general)

Cr2+, chromium(2+)

Cr3+, chromium(3+)

Ligands

chromido

Heteroatomic Anion

chromate

'a' Term—Substitutive Nomenclature

chroma

'y' Term—Chains and Rings Nomenclature

chromy

References    (Click the button next to a value above to see complete citation information for that entry)

Allred, A. L. "Electronegativity Values from Thermochemical Data." Journal of Inorganic and Nuclear Chemistry, volume 17, number 3-4, 1961, pp. 215–221. doi:10.1016/0022-1902(61)80142-5

Allred, A. L., and E. G. Rochow. "A Scale of Electronegativity Based on Electrostatic Force." Journal of Inorganic and Nuclear Chemistry, volume 5, number 4, 1958, pp. 264–268. doi:10.1016/0022-1902(58)80003-2

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Andersen, T., H. K. Haugen, and H. Hotop. "Binding Energies in Atomic Negative Ions: III." Journal of Physical and Chemical Reference Data, volume 28, number 6, 1999, pp. 1511–1533.

Barsan, Michael E., editor. NIOSH Pocket Guide to Chemical Hazards. Cincinnati, Ohio: NIOSH Publications, 2007.

Batsanov, S. S. "Van der Waals Radii of Elements." Inorganic Materials, volume 37, number 9, 2001, pp. 871–885. See abstract

Bearden, J. A., and A. F. Burr. "Reevaluation of X-Ray Atomic Energy Levels." Reviews of Modern Physics, volume 39, number 1, 1967, pp. 125–142. doi:10.1103/RevModPhys.39.125

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Chase, Malcolm W., editor. JPCRD Monograph No. 9: NIST-JANAF Thermochemical Tables, (Part I and Part II). Woodbury, NY: American Chemical Society and the American Institute of Physics, 1998.

Clementi, E., and D. L. Raimondi. "Atomic Screening Constants from SCF Functions." Journal of Chemical Physics, volume 38, number 11, 1963, pp. 2686–2689. doi:10.1063/1.1733573

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

Cox, P. A. The Elements: Their Origin, Abundance and Distribution. Oxford: Oxford University Press, 1989.

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Ebbing, Darrell D., and Steven D. Gammon. General Chemistry, 8th edition. Boston, MA: Houghton Mifflin Company, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Fawcett, E., R. Griessen, and D. J. Stanley. "Stress Dependence of the Fermi Surface of Antiferromagnetic Chromium." Journal of Low Temperature Physics, volume 25, number 5-6, 1976, pp. 771–792. doi:10.1007/BF00657298

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Fitzsimmons, M. R., J. A. Eastman, R. A. Robinson, and J. W. Lynn. "The Néel Temperature of Nanocrystalline Chromium." Journal of Applied Physics, volume 78, number 2, 1995, pp. 1364–1366. doi:10.1063/1.360765

Fuggle, John C., and Nils Mårtensson. "Core-Level Binding Energies in Metals." Journal of Electron Spectroscopy and Related Phenomena, volume 21, number 3, 1980, pp. 275–281. doi:10.1016/0368-2048(80)85056-0

Ghosh, Dulal C., and Kartick Gupta. "A New Scale Of Electronegativity Of 54 Elements Of Periodic Table Based On Polarizability Of Atoms." Journal of Theoretical and Computational Chemistry, volume 5, number 4, 2006, pp. 895–911. doi:10.1142/S0219633606002726

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Horvath, A. L. "Critical Temperature of Elements and the Periodic System." Journal of Chemical Education, volume 50, number 5, 1973, pp. 335–336. doi:10.1021/ed050p335

Hotop, H., and W. C. Lineberger. "Binding Energies in Atomic Negative Ions: II." Journal of Physical and Chemical Reference Data, volume 14, number 3, 1985, pp. 731–750.

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

International Labour Organization (ILO). International Chemical Safety Card for Chromium. http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc00/icsc0029.htm. Accessed on May 4, 2010.

Jensen, J. E., R. B. Stewart, W. A Tuttle, H. Brechna, and A. G. Prodell, editors. Brookhaven National Laboratory Selected Cryogenic Data Notebook. BNL 10200-R, Vol. 1, Brookhaven National Laboratory, August 1980.

Jessberger, Elmar K., Alexander Christoforidis, and Jochen Kissel. "Aspects of the Major Element Composition of Halley's Dust." Nature, volume 332, number 21, 1988, pp. 691–695. doi:10.1038/332691a0

Kaxiras, Efthimios. Atomic and Electronic Structure of Solids. Cambridge: Cambridge University Press, 2003.

King, H. W. "Pressure-Dependent Allotropic Structures of the Elements." Bulletin of Alloy Phase Diagrams, volume 4, number 4, 1983, pp. 449–450. doi:10.1007/BF02868110

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Krause, M. O. "Atomic Radiative and Radiationless Yields for K and L Shells." Journal of Physical and Chemical Reference Data, volume 8, number 2, 1979, pp. 307–327.

Li, Y.-H., and J. E. Schoonmaker. "Chemical Composition and Mineralogy of Marine Sediments." pp. 1–36 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Mann, Joseph B., Terry L. Meek, Eugene T. Knight, Joseph F. Capitani, and Leland C. Allen. "Configuration Energies of the d-Block Elements." Journal of the American Chemical Society, volume 122, number 21, 2000, pp. 5132–5137. doi:10.1021/ja9928677

Manuel, O., editor. Origin of Elements in the Solar System: Implications of Post-1957 Observations. New York: Kluwer Academic Publishers, 2000.

Marshall, James L. Discovery of the Elements: A Search for the Fundamental Principles of the Universe, 2nd edition. Boston, MA: Pearson Custom Publishing, 2002.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Chromium. http://www.cdc.gov/niosh/ipcsneng/neng0029.html. Accessed on May 4, 2010.

National Institute for Occupational Safety and Health (NIOSH). The Registry of Toxic Effects of Chemical Substances for Chromium. http://www.cdc.gov/niosh-rtecs/gb401640.html. Accessed on May 5, 2010.

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Oxtoby, David W., H. P. Gillis, and Alan Campion. Principles of Modern Chemistry, 6th edition. Belmont, CA: Thomson Brooks/Cole, 2008.

Palme, H., and H. Beer. "Meteorites and the Composition of the Solar Photosphere." pp. 204–206 in Landolt–Börnstein—Group VI: Astronomy and Astrophysics. Edited by H. H. Voigt. New York: Springer–Verlag, 1993. doi:10.1007/10057790_59

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pearson, Ralph G. "Absolute Electronegativity and Hardness: Application to Inorganic Chemistry." Inorganic Chemistry, volume 27, number 4, 1988, pp 734–740. doi:10.1021/ic00277a030

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Pyykkö, Pekka, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii." Chemistry - A European Journal, volume 11, number 12, 2005, pp. 3511–3520. doi:10.1002/chem.200401299

Ringnes, Vivi. "Origin of the Names of Chemical Elements." Journal of Chemical Education, volume 66, number 9, 1989, pp. 731–738. doi:10.1021/ed066p731

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sanderson, R. T. Simple Inorganic Substances. Malabar, FL: Robert E. Krieger Publishing Co., Inc., 1989.

Sanderson, R. T. "Principles of Electronegativity: Part I. General Nature." Journal of Chemical Education, volume 65, number 2, 1988, pp. 112–118. doi:10.1021/ed065p112

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Scientific Group Thermodata Europe (SGTE). Pure Substances: Part 1—Elements and Compounds from AgBr to Ba3N2. Edited by I. Hurtado and D. Neuschütz. Berlin: Springer-Verlag, 1999. doi:10.1007/10652891_3

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Stewart, G. R. "Measurement of low-temperature specific heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Sugar, Jack, and Charles Corliss. "Atomic Energy Levels of the Iron-Period Elements: Potassium through Nickel." Journal of Physical and Chemical Reference Data, volume 14, number 2, 1985, pp. 1–664.

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Wagman, Donald D., William H. Evans, Vivian B. Parker, Richard H. Schumm, Iva Halow, Sylvia M. Bailey, Kenneth L. Churney, and Ralph L. Nuttall. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 11, supplement 2, 1982, pp. 2–1 to 2–392.

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Weeks, Mary Elvira, and Henry M. Leicester. Discovery of the Elements, 7th edition. Easton, PA: Journal of Chemical Education, 1968.

Wieser, Michael E., and Tyler B. Coplen. "Atomic weights of the elements 2009 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 83, number 2, 2011, pp. 359–396. doi:10.1351/PAC-REP-10-09-14

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.