Dysprosium

Dysprosium Navigation

Other Elements

By Name

By Symbol

By Number

Solutions manuals and the Numerari scientific calculator from KnowledgeDoor Learn more about our solutions
manuals Learn more about Numerari

Quantity

Dysprosium Quick Reference

Click button to see citations

Notes

Symbol

Dy

Atomic Number

66

Atomic Weight

Rounded

162.5

for regular calculations

Standard

162.500 ± 0.001

for precise calculations

Oxidation States

4

less common

3

more common

2

less common

Pauling Electronegativity

1.22

Electron Configuration

Orbital Occupancy

[Xe] 4f10 6s2

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s2 4f10

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

5I8

see expanded configuration ...

Ionization Energies

I   (1)

 5.9389 eV   

II  (2)

11.67 eV     

III (3)

22.8 ± 0.3 eV

IV  (4)

41.4 ± 0.4 eV

Density

liquid, 1685.15 K

8.200 g/ml 

solid, 25 °C

8.550 g/cm3

Molar Volume

solid, 298 K, 1 atm

19.01 cm3/mol

Melting Point

1683 ± 4 K

Boiling Point

1 atm

2840.15 K

Thermal Conductivity

solid

300 K

polycrystalline

10.7 W/(m K)

parallel to c-axis

11.7 W/(m K)

perpendicular to c-axis

10.3 W/(m K)

273.2 K

polycrystalline

10.5 W/(m K)

parallel to c-axis

11.4 W/(m K)

perpendicular to c-axis

10.1 W/(m K)

see all 54 conductivities ...

Pyykkö Covalent Radius

single bond

167 pm

double bond

133 pm

Atomic Radius

175 pm

Enthalpy of Fusion

1 atm

17.2 kJ/mol

Enthalpy of Vaporization

1 atm

293 kJ/mol

Quantity

Dysprosium Atomic Structure

Notes

Ionization Energies

I   (1)

 5.9389 eV   

II  (2)

11.67 eV     

III (3)

22.8 ± 0.3 eV

IV  (4)

41.4 ± 0.4 eV

Electron Binding Energies

K    (1s)

53789 eV  

LI   (2s)

 9046 eV  

LII  (2p1/2)

 8581 eV  

LIII (2p3/2)

 7790 eV  

see all 19 energies ...

Electron Configuration

Orbital Occupancy

[Xe] 4f10 6s2

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s2 4f10

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

5I8

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

64.7086

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

64.7086

Zeff = ζ × n

2s

Orbital Exponent

24.3547

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

48.7094

Zeff = ζ × n

see all 13 effective nuclear charges ...

Screening Percentage

90.9%

Fluorescence Yields

ωK

0.938

ωL1

0.111

ωL2

0.197

ωL3

0.184

Coster-Kronig Yields

F12

0.174

F13

0.290

F23

0.146

Quantity

Dysprosium Physical Properties

Notes

Density

liquid, 1685.15 K

8.200 g/ml 

solid, 25 °C

8.550 g/cm3

Molar Mass

Rounded

162.5 g/mol

for regular calculations

Standard

162.500 ± 0.001 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

19.01 cm3/mol

Physical Form

silvery metal

Linear Thermal Expansion Coefficient

25 °C

9.9×10-6 K-1

Speed of Sound

solid, 293 K

2710 m/s

calculated value

Young's Modulus

α-dysprosium

61.4 GPa

Poisson's Ratio

α-dysprosium

0.237

Electrical Resistivity

solid, 295 K

90.0×10-8 Ohm m

Vickers Hardness

cast, 293 K

540 MN/m2

annealed, 293 K

412 MN/m2

Isothermal Bulk Modulus

300 K

38.4 GPa

Isothermal Compressibility

300 K

0.0260 GPa-1

Gram Atomic Volume

19 cm3

Quantity

Dysprosium Atomic Interaction

Notes

Oxidation States

4

less common

3

more common

2

less common

Pauling Electronegativity

1.22

Allred-Rochow Electronegativity

1.10

Allred Electronegativity

oxidation state: 1

1.22

Nagle Electronegativity

1.09

Cohesive Energy

per mole

294 kJ/mol    

per atom

  3.04 eV/atom

Quantity

Dysprosium Thermodynamics

Notes

Melting Point

1683 ± 4 K

Boiling Point

1 atm

2840.15 K

Thermal Conductivity

solid

300 K

polycrystalline

10.7 W/(m K)

parallel to c-axis

11.7 W/(m K)

perpendicular to c-axis

10.3 W/(m K)

273.2 K

polycrystalline

10.5 W/(m K)

parallel to c-axis

11.4 W/(m K)

perpendicular to c-axis

10.1 W/(m K)

see all 54 conductivities ...

Critical Point

7640 K

Vapor Pressure

2558 °C

100 kPa

2031 °C

10 kPa

1681 °C

1 kPa

1431 °C

100 Pa

1250 °C

10 Pa

1105 °C

1 Pa

Curie Point

92.1 K

Neel Point

180.2 K

Enthalpy of Fusion

1 atm

17.2 kJ/mol

Enthalpy of Vaporization

1 atm

293 kJ/mol

Isobaric Molar Heat Capacity

298.15 K, 1 bar

28.16 J/(mol K)

Isobaric Specific Heat Capacity

298.15 K, 1 bar

0.173 J/(g K)

Debye Temperature

Low Temperature Limit ( 0 K )

183 K

Room Temperature ( 298 K )

158 K

Quantity

Dysprosium Identification

Notes

CAS Number

7429-91-6

Quantity

Dysprosium Atomic Size

Notes

Atomic Radius

175 pm

Orbital Radius

175.0 pm

Pyykkö Covalent Radius

single bond

167 pm

double bond

133 pm

Cordero Covalent Radius

192 pm

Shannon-Prewitt Crystal Radius

ion charge: +2

coordination number: 6

121 pm  

coordination number: 7

127 pm  

coordination number: 8

133 pm  

ion charge: +3

coordination number: 6

105.2 pm

coordination number: 7

111 pm  

coordination number: 8

116.7 pm

coordination number: 9

122.3 pm

Shannon-Prewitt Effective Ionic Radius

ion charge: +2

coordination number: 6

107 pm  

coordination number: 7

113 pm  

coordination number: 8

119 pm  

ion charge: +3

coordination number: 6

 91.2 pm

coordination number: 7

 97 pm  

coordination number: 8

102.7 pm

coordination number: 9

108.3 pm

Pauling Empirical Crystal Radius

ion charge: +3

99 pm

Slater Atomic-Ionic Radius

175 pm

Quantity

Dysprosium Crystal Structure

Notes

Allotropes

allotrope

α'-dysprosium

symbol

α'Dy

allotrope

α-dysprosium

symbol

αDy

allotrope

β-dysprosium

symbol

βDy

allotrope

γ-dysprosium

symbol

γDy

Nearest Neighbor Distance

300 K, 1 atm

351 pm

Atomic Concentration

300 K, 1 atm

3.17×1022 cm-3

Quantity

Dysprosium History

Notes

Discovery

date of discovery

1886

discoverer

Paul-Émile Lecoq de Boisbaudran

birth

April 18, 1838

death

May 28, 1912

location of discovery

Paris, France

Origin of Element Name

origin

dysprositos

origin description

property—Greek for hard or difficult to obtain

Origin of Element Symbol

symbol: Dy

origin

dysprosium

origin description

element name

Quantity

Dysprosium Abundances

Notes

Earth's Crust

5.2 ppm

Earth's Mantle

711 ppb

primitive mantle

Bulk Earth

0.46 ppm

Ocean Water

9.1×10-7 ppm

Metalliferous Ocean Sediment

Basal

20.7 ppm

Ridge

7.3 ppm

U.S. Coal

1.9 ppm

Ferns

0.05 ppm to 0.6 ppm

Solar System

0.3942

number of atoms for every 106 atoms of silicon

Sun

1.14 ± 0.08

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Meteorites

1.16 ± 0.02

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Quantity

Dysprosium Nomenclature

Notes

Element Names in Other Languages

French

dysprosium

German

Dysprosium

Italian

disprosio

Spanish

disprosio

Portuguese

disprósio

Anions or Anionic Substituent Groups

dysproside

Cations or Cationic Substituent Groups

dysprosium

Ligands

dysprosido

Heteroatomic Anion

dysprosate

'a' Term—Substitutive Nomenclature

dysprosa

'y' Term—Chains and Rings Nomenclature

dysprosy

References    (Click the button next to a value above to see complete citation information for that entry)

Allred, A. L. "Electronegativity Values from Thermochemical Data." Journal of Inorganic and Nuclear Chemistry, volume 17, number 3-4, 1961, pp. 215–221. doi:10.1016/0022-1902(61)80142-5

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells. Part II: The L1 Subshell Revisited." Atomic Data and Nuclear Data Tables, volume 95, number 1, 2009, pp. 115–124. doi:10.1016/j.adt.2008.08.002

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells." Atomic Data and Nuclear Data Tables, volume 85, number 2, 2003, pp. 291–315. doi:10.1016/S0092-640X(03)00059-7

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Clementi, E., D. L. Raimondi, and W. P. Reinhardt. "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons." Journal of Chemical Physics, volume 47, number 4, 1967, pp. 1300–1307. doi:10.1063/1.1712084

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

Cox, P. A. The Elements: Their Origin, Abundance and Distribution. Oxford: Oxford University Press, 1989.

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Horvath, A. L. "Critical Temperature of Elements and the Periodic System." Journal of Chemical Education, volume 50, number 5, 1973, pp. 335–336. doi:10.1021/ed050p335

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

Ihde, Aaron J. The Development of Modern Chemistry. New York: Dover Publications, Inc., 1984.

Jr., Elbert J. Little,, and Mark M. Jones. "A Complete Table of Electronegativities." Journal of Chemical Education, volume 37, number 5, 1960, pp. 231–233. doi:10.1021/ed037p231

King, H. W. "Pressure-Dependent Allotropic Structures of the Elements." Bulletin of Alloy Phase Diagrams, volume 4, number 4, 1983, pp. 449–450. doi:10.1007/BF02868110

King, H. W. "Temperature-Dependent Allotropic Structures of the Elements." Bulletin of Alloy Phase Diagrams, volume 3, number 2, 1982, pp. 275–276. doi:10.1007/BF02892394

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Konings, Rudy J. M., and Ondrej Beneš. "The Thermodynamic Properties of the f-Elements and Their Compounds. I. The Lanthanide and Actinide Metals." Journal of Physical and Chemical Reference Data, volume 39, number 4, 2010, pp. 043102–1 to 043102–47. doi:10.1063/1.3474238

Li, Y.-H., and J. E. Schoonmaker. "Chemical Composition and Mineralogy of Marine Sediments." pp. 1–36 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Manuel, O., editor. Origin of Elements in the Solar System: Implications of Post-1957 Observations. New York: Kluwer Academic Publishers, 2000.

Marshall, James L. Discovery of the Elements: A Search for the Fundamental Principles of the Universe, 2nd edition. Boston, MA: Pearson Custom Publishing, 2002.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

Martin, W. C., Romuald Zalubas, and Lucy Hagan. Atomic Energy Levels—The Rare-Earth Elements. Washington, D.C.: National Bureau of Standards, 1978.

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Ringnes, Vivi. "Origin of the Names of Chemical Elements." Journal of Chemical Education, volume 66, number 9, 1989, pp. 731–738. doi:10.1021/ed066p731

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Scientific Group Thermodata Europe (SGTE). Pure Substances: Part 1—Elements and Compounds from AgBr to Ba3N2. Edited by I. Hurtado and D. Neuschütz. Berlin: Springer-Verlag, 1999. doi:10.1007/10652891_3

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Wagman, Donald D., William H. Evans, Vivian B. Parker, Richard H. Schumm, Iva Halow, Sylvia M. Bailey, Kenneth L. Churney, and Ralph L. Nuttall. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 11, supplement 2, 1982, pp. 2–1 to 2–392.

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Weeks, Mary Elvira, and Henry M. Leicester. Discovery of the Elements, 7th edition. Easton, PA: Journal of Chemical Education, 1968.

Wieser, Michael E., and Tyler B. Coplen. "Atomic weights of the elements 2009 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 83, number 2, 2011, pp. 359–396. doi:10.1351/PAC-REP-10-09-14

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.