Gold

Gold Navigation

Other Elements

By Name

By Symbol

By Number

Solutions manuals and the Numerari scientific calculator from KnowledgeDoor Learn more about our solutions manuals Learn
more about Numerari

Quantity

Gold Quick Reference

Click button to see citations

Notes

Symbol

Au

Atomic Number

79

Atomic Weight

Rounded

197.0

for regular calculations

Standard

196.966569 ± 0.000004

for precise calculations

Oxidation States

 7

less common

 5

less common

 3

more common

 2

less common

 1

less common with disagreement

 0

less common

-1

less common

Pauling Electronegativity

2.54

Electron Configuration

Orbital Occupancy

[Xe] 4f14 5d10 6s1

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s1 4f14 5d10

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

2S1/2

see expanded configuration ...

Ionization Energies

I  (1)

 9.22553 eV

II (2)

20.20 eV   

Electron Affinity

2.30861 ± 0.00003 eV

18620.2 ± 0.2 cm-1  

Density

6200 K, 0.45 GPa

 5.6 g/cm3  

critical point, predicted

liquid, 1337.33 K

17.282 g/ml 

solid, 25 °C

19.300 g/cm3

Molar Volume

solid, 298 K, 1 atm

10.21 cm3/mol

Melting Point

1 atm

1337.33 K

ITS-90 fixed point (freezing point)

Boiling Point

1 atm

3129.15 K

Thermal Conductivity

solid

400 K

311 W/(m K)

300 K

317 W/(m K)

298.2 K

318 W/(m K)

273.2 K

319 W/(m K)

200 K

323 W/(m K)

see all 60 conductivities ...

Pyykkö Covalent Radius

single bond

124 pm

double bond

121 pm

triple bond

123 pm

Atomic Radius

144 pm

Enthalpy of Fusion

1 atm

12.7 kJ/mol

Enthalpy of Vaporization

1 atm

324.4 kJ/mol

Quantity

Gold Atomic Structure

Notes

Ionization Energies

I  (1)

 9.22553 eV

II (2)

20.20 eV   

Electron Affinity

2.30861 ± 0.00003 eV

18620.2 ± 0.2 cm-1  

Electron Binding Energies

K    (1s)

80725 eV  

LI   (2s)

14353 eV  

LII  (2p1/2)

13734 eV  

LIII (2p3/2)

11919 eV  

see all 19 energies ...

Electron Configuration

Orbital Occupancy

[Xe] 4f14 5d10 6s1

[Xe] represents the closed-shell electron configuration of xenon

Orbital Filling Order

[Xe] 6s1 4f14 5d10

[Xe] represents the closed-shell electron configuration of xenon

Term Symbol

2S1/2

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

77.4761

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

77.4761

Zeff = ζ × n

2s

Orbital Exponent

29.1849

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

58.3698

Zeff = ζ × n

see all 14 effective nuclear charges ...

Screening Percentage

85.4%

Fluorescence Yields

ωK

0.960

ωL1

0.117

ωL2

0.358

ωL3

0.313

Coster-Kronig Yields

F12

0.074

F13

0.615

F23

0.125

Quantity

Gold Physical Properties

Notes

Density

6200 K, 0.45 GPa

 5.6 g/cm3  

critical point, predicted

liquid, 1337.33 K

17.282 g/ml 

solid, 25 °C

19.300 g/cm3

Molar Mass

Rounded

197.0 g/mol

for regular calculations

Standard

196.966569 ± 0.000004 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

10.21 cm3/mol

Physical Form

soft yellow metal

Linear Thermal Expansion Coefficient

25 °C

14.2×10-6 K-1

283 K

14.08×10-6 K-1

85 K

11.03×10-6 K-1

75 K

10.41×10-6 K-1

65 K

9.58×10-6 K-1

57.5 K

8.75×10-6 K-1

see all 29 coefficients ...

Speed of Sound

solid

room temperature, hard-drawn, extensional wave

2030 m/s

20 °C

longitudinal wave

3240 m/s

shear wave

1200 m/s

288 K to 293 K, annealed

1740 m/s

283 K

2110 m/s

Young's Modulus

78.5 GPa

Poisson's Ratio

0.420

Electrical Resistivity

solid

200 K

1.462×10-8 Ohm m

273.15 K

2.051×10-8 Ohm m

293 K

2.214×10-8 Ohm m

300 K

2.271×10-8 Ohm m

400 K

3.107×10-8 Ohm m

see all 45 resistivities ...

Contact Potential

4.46 eV

Photoelectric Work Function

4.82 eV

Thermionic Work Function

4.32 eV

Mineralogical Hardness

2.5

Vickers Hardness

293 K

216 MN/m2

483 K

182 MN/m2

see all 6 hardnesses ...

Reflectivity

surface polished electrolytically

0.450 μm

33.1%

0.550 μm

74.0%

0.650 μm

88.9%

see all 17 reflectivities ...

Isothermal Bulk Modulus

300 K

173.2 GPa

Isothermal Compressibility

300 K

0.00577 GPa-1

Gram Atomic Volume

10 cm3

Quantity

Gold Atomic Interaction

Notes

Oxidation States

 7

less common

 5

less common

 3

more common

 2

less common

 1

less common with disagreement

 0

less common

-1

less common

Pauling Electronegativity

2.54

Mulliken-Jaffe Electronegativity

orbitals

1.87

Allred-Rochow Electronegativity

1.42

Configuration Energy

electron volt units

11.33 eV

Pauling units

 1.92   

Allred Electronegativity

oxidation state: 1

2.54

Nagle Electronegativity

1.53

Pearson Absolute Electronegativity

5.77 eV

Smith Electronegativity

oxidation state: 3

2.5

oxidation state: 1

2.4

Free Electron Fermi Surface Parameters

300 K

electron concentration

5.90×1022 cm-3

radius parameter

3.01

fermi wavevector

1.20×108 cm-1

fermi velocity

1.39×108 cm/s

fermi energy

5.51 eV

fermi temperature

6.39×104 K

Chemical Hardness

3.46 eV

Cohesive Energy

per mole

368 kJ/mol    

per atom

  3.81 eV/atom

Quantity

Gold Thermodynamics

Notes

Melting Point

1 atm

1337.33 K

ITS-90 fixed point (freezing point)

Boiling Point

1 atm

3129.15 K

Thermal Conductivity

solid

400 K

311 W/(m K)

300 K

317 W/(m K)

298.2 K

318 W/(m K)

273.2 K

319 W/(m K)

200 K

323 W/(m K)

see all 60 conductivities ...

Critical Point

temperature

6200 K

predicted

pressure

0.45 GPa

Vapor Pressure

2805 °C

100 kPa

2347 °C

10 kPa

2008 °C

1 kPa

1748 °C

100 Pa

1541 °C

10 Pa

1373 °C

1 Pa

Enthalpy of Fusion

1 atm

12.7 kJ/mol

Enthalpy of Vaporization

1 atm

324.4 kJ/mol

Isobaric Molar Heat Capacity

298.15 K, 1 bar

25.418 J/(mol K)

Isobaric Specific Heat Capacity

298.15 K, 1 bar

0.129 J/(g K)

Electronic Heat Capacity Coefficient

0.69 mJ/(mol K2)

Debye Temperature

Low Temperature Limit ( 0 K )

162.3 K

Room Temperature ( 298 K )

178 K  

Quantity

Gold Identification

Notes

CAS Number

7440-57-5

Quantity

Gold Atomic Size

Notes

Atomic Radius

144 pm

Orbital Radius

118.7 pm

Pyykkö Covalent Radius

single bond

124 pm

double bond

121 pm

triple bond

123 pm

Cordero Covalent Radius

136 pm

Shannon-Prewitt Crystal Radius

ion charge: +1, coordination number: 6

151 pm

ion charge: +3

coordination number: 4, square planer

 82 pm

coordination number: 6

 99 pm

ion charge: +5, coordination number: 6

 71 pm

Shannon-Prewitt Effective Ionic Radius

ion charge: +1, coordination number: 6

137 pm

ion charge: +3

coordination number: 4, square planer

 68 pm

coordination number: 6

 85 pm

ion charge: +5, coordination number: 6

 57 pm

Pauling Empirical Crystal Radius

ion charge: +1

137 pm

Pauling Univalent Radius

ion charge: +1

137 pm

Batsanov Crystallographic Van Der Waals Radius

2.1×102 pm

Batsanov Equilibrium Van Der Waals Radius

241 pm

Bondi Van Der Waals Radius

166 pm

Slater Atomic-Ionic Radius

135 pm

Quantity

Gold Crystal Structure

Notes

Nearest Neighbor Distance

300 K, 1 atm

288 pm

Atomic Concentration

300 K, 1 atm

5.90×1022 cm-3

Quantity

Gold History

Notes

Discovery

date of discovery

circa 5000 BC

discoverer

unknown

location of discovery

unknown

Origin of Element Name

origin

gold

origin description

word—Anglo-Saxon

Origin of Element Symbol

symbol: Au

origin

aurum

origin description

word—Latin for glow of sunrise

U.S. Towns Named After Elements

Gold, Texas

Gold Hill, Colorado

Quantity

Gold Abundances

Notes

Earth's Crust

4×10-3 ppm

Earth's Mantle

0.88 ppb

primitive mantle

Earth's Core

0.5 ppm

Bulk Earth

0.16 ppm

Ocean Water

5×10-5 ppm

Metalliferous Ocean Sediment

Ridge

16 ppb

River Water

2×10-6 ppm

U.S. Coal

<0.05 ppm

estimated from USGS and literature data

Human Body

0.2 mg

based on a 70 kg "reference man"

Human Bone

0.016 ppm

Human Hair

0.0017 ppm to 1.8 ppm

Human Kidney

0.014 ppm

Human Liver

0.0004 ppm

Human Nail

0.03 ppm to 0.8 ppm

Ferns

0.0017 ppm

Solar System

0.187

number of atoms for every 106 atoms of silicon

Sun

1.01 ± 0.15

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Meteorites

0.86 ± 0.02

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Quantity

Gold Nomenclature

Notes

Element Names in Other Languages

French

or

German

Gold

Italian

oro

Spanish

oro

Portuguese

ouro

Anions or Anionic Substituent Groups

auride

Cations or Cationic Substituent Groups

gold (general)

Au+, gold(1+)

Au3+, gold(3+)

Ligands

aurido

Heteroatomic Anion

aurate

'a' Term—Substitutive Nomenclature

aura

'y' Term—Chains and Rings Nomenclature

aury

References    (Click the button next to a value above to see complete citation information for that entry)

Allred, A. L. "Electronegativity Values from Thermochemical Data." Journal of Inorganic and Nuclear Chemistry, volume 17, number 3-4, 1961, pp. 215–221. doi:10.1016/0022-1902(61)80142-5

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Andersen, T., H. K. Haugen, and H. Hotop. "Binding Energies in Atomic Negative Ions: III." Journal of Physical and Chemical Reference Data, volume 28, number 6, 1999, pp. 1511–1533.

Batsanov, S. S. "Van der Waals Radii of Elements." Inorganic Materials, volume 37, number 9, 2001, pp. 871–885. See abstract

Bondi, A. "Van der Waals Volumes and Radii." The Journal of Physical Chemistry, volume 68, number 3, 1964, pp. 441–451. doi:10.1021/j100785a001

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Bratsch, Steven G. "Revised Mulliken Electronegativities: I. Calculation and Conversion to Pauling Units." Journal of Chemical Education, volume 65, number 1, 1988, pp. 34–41. doi:10.1021/ed065p34

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells. Part II: The L1 Subshell Revisited." Atomic Data and Nuclear Data Tables, volume 95, number 1, 2009, pp. 115–124. doi:10.1016/j.adt.2008.08.002

Campbell, J. L. "Fluorescence Yields and Coster–Kronig Probabilities for the Atomic L Subshells." Atomic Data and Nuclear Data Tables, volume 85, number 2, 2003, pp. 291–315. doi:10.1016/S0092-640X(03)00059-7

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Clementi, E., D. L. Raimondi, and W. P. Reinhardt. "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons." Journal of Chemical Physics, volume 47, number 4, 1967, pp. 1300–1307. doi:10.1063/1.1712084

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Galasso, Francis S. Structure and Properties of Inorganic Solids. Oxford: Pergamon Press, 1970.

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Ho, Joe, Kent M. Ervin, and W. C. Lineberger. "Photoelectron Spectroscopy of Metal Cluster Anions: Cu-n, Ag-n, and Au-n." Journal of Chemical Physics, volume 93, number 10, 1990, pp. 6987–7002. doi:10.1063/1.459475

Höhne, G. W. H., W. F. Hemminger, and H.-J. Flammersheim. Differential Scanning Calorimetry, 2nd edition. Berlin: Springer–Verlag, 2003.

Hotop, H., and W. C. Lineberger. "Binding Energies in Atomic Negative Ions: II." Journal of Physical and Chemical Reference Data, volume 14, number 3, 1985, pp. 731–750.

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

Jr., Elbert J. Little,, and Mark M. Jones. "A Complete Table of Electronegativities." Journal of Chemical Education, volume 37, number 5, 1960, pp. 231–233. doi:10.1021/ed037p231

Kerley, Gerald I., editor. Equations of State for Be, Ni, W, and Au. SAND2003-3784, Sandia National Laboratories, October 2003.

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Li, Y.-H., and J. E. Schoonmaker. "Chemical Composition and Mineralogy of Marine Sediments." pp. 1–36 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Mann, Joseph B., Terry L. Meek, Eugene T. Knight, Joseph F. Capitani, and Leland C. Allen. "Configuration Energies of the d-Block Elements." Journal of the American Chemical Society, volume 122, number 21, 2000, pp. 5132–5137. doi:10.1021/ja9928677

Manuel, O., editor. Origin of Elements in the Solar System: Implications of Post-1957 Observations. New York: Kluwer Academic Publishers, 2000.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

Matula, R. A. "Electrical Resistivity of Copper, Gold, Palladium, and Silver." Journal of Physical and Chemical Reference Data, volume 8, number 4, 1979, pp. 1147–1298.

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

Nicholas, J. V., and D. R. White. "Temperature." pp. 8–41 in Measurement of the Thermodynamic Properties of Single Phases. Edited by A. R. H. Goodwin, W. A. Wakeham, and K. N. Marsh. Amsterdam: Elsevier Science, 2003.

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Oxtoby, David W., H. P. Gillis, and Alan Campion. Principles of Modern Chemistry, 6th edition. Belmont, CA: Thomson Brooks/Cole, 2008.

Palme, H., and H. Beer. "Meteorites and the Composition of the Solar Photosphere." pp. 204–206 in Landolt–Börnstein—Group VI: Astronomy and Astrophysics. Edited by H. H. Voigt. New York: Springer–Verlag, 1993. doi:10.1007/10057790_59

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pearson, Ralph G. "Absolute Electronegativity and Hardness: Application to Inorganic Chemistry." Inorganic Chemistry, volume 27, number 4, 1988, pp 734–740. doi:10.1021/ic00277a030

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Preston-Thomas, H. "The International Temperature Scale of 1990 (ITS-90)." Metrologia, volume 27, number 1, 1990, pp. 3–10. doi:10.1088/0026-1394/27/1/002

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Pyykkö, Pekka, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii." Chemistry - A European Journal, volume 11, number 12, 2005, pp. 3511–3520. doi:10.1002/chem.200401299

Ringnes, Vivi. "Origin of the Names of Chemical Elements." Journal of Chemical Education, volume 66, number 9, 1989, pp. 731–738. doi:10.1021/ed066p731

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Stewart, G. R. "Measurement of low-temperature specific heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Wagman, Donald D., William H. Evans, Vivian B. Parker, Richard H. Schumm, Iva Halow, Sylvia M. Bailey, Kenneth L. Churney, and Ralph L. Nuttall. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 11, supplement 2, 1982, pp. 2–1 to 2–392.

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

White, G. K., and J. G. Collins. "Thermal Expansion of Copper, Silver, and Gold at Low Temperatures." Journal of Low Temperature Physics, volume 7, number 1-2, 1972, pp. 43–75. doi:10.1007/BF00629120

Wieser, Michael E., and Tyler B. Coplen. "Atomic weights of the elements 2009 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 83, number 2, 2011, pp. 359–396. doi:10.1351/PAC-REP-10-09-14

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.