Carbon

Carbon Navigation

Other Elements

By Name

By Symbol

By Number

Solutions manuals and the Numerari scientific calculator from KnowledgeDoor Learn more about our solutions
manuals Learn more about Numerari

Quantity

Carbon Quick Reference

Click button to see citations

Notes

Symbol

C

Atomic Number

6

Atomic Weight

Rounded

12.011

for regular calculations

Standard

12.0096 to 12.0116

for precise calculations

Oxidation States

 4

more common

 3

less common

 2

less common

 1

less common

-1

less common

-2

less common

-3

less common

-4

more common

Pauling Electronegativity

2.55

Electron Configuration

Orbital Occupancy

[He] 2s2 2p2

[He] represents the closed-shell electron configuration of helium

Orbital Filling Order

[He] 2s2 2p2

[He] represents the closed-shell electron configuration of helium

Term Symbol

3P0

see expanded configuration ...

Ionization Energies

I   (1)

11.26030 eV

II  (2)

24.3833 eV 

III (3)

47.8878 eV 

IV  (4)

64.4939 eV 

see all 6 energies ...

Electron Affinity

1.262118 ± 0.000020 eV

10179.67 ± 0.15 cm-1  

Density

diamond, solid, 25 °C

3.513 g/cm3

graphite

liquid, 4765.00 K

1.611 g/ml 

solid

300 K

2.26 g/cm3 

theoretical density for a perfect crystal

25 °C

2.200 g/cm3

Molar Volume

solid, 298 K, 1 atm

5.29 cm3/mol

diamond, solid, 298 K, 1 atm

3.42 cm3/mol

Melting Point

diamond, 125 kbar

4100 ± 200 K

graphite

1 kbar

4800 ± 200 K

100 atm

4200 K

hexagonal graphite, 9 kbar

4100 ± 100 K

Boiling Point

graphite, 1 atm

3825 °C

sublimes

Thermal Conductivity

diamond, solid

400 K, Type I

650 W/(m K)

extrapolated

300 K, Type I

895 W/(m K)

298.2 K, Type I

900 W/(m K)

273.2 K, Type I

994 W/(m K)

200 K, Type I

14.1×102 W/(m K)

400 K, Type IIa

15.4×102 W/(m K)

extrapolated

300 K, Type IIa

23.0×102 W/(m K)

298.2 K, Type IIa

23.2×102 W/(m K)

273.2 K, Type IIa

26.2×102 W/(m K)

200 K, Type IIa

40.3×102 W/(m K)

400 K, Type IIb

932 W/(m K)

extrapolated

300 K, Type IIb

13.5×102 W/(m K)

298.2 K, Type IIb

13.6×102 W/(m K)

273.2 K, Type IIb

15.2×102 W/(m K)

200 K, Type IIb

22.6×102 W/(m K)

see all 54 conductivities ...

Pyykkö Covalent Radius

single bond

75 pm

double bond

67 pm

triple bond

60 pm

Atomic Radius

77 pm

Quantity

Carbon Atomic Structure

Notes

Ionization Energies

I   (1)

11.26030 eV

II  (2)

24.3833 eV 

III (3)

47.8878 eV 

IV  (4)

64.4939 eV 

see all 6 energies ...

Electron Affinity

1.262118 ± 0.000020 eV

10179.67 ± 0.15 cm-1  

Electron Binding Energies

(1s)

284.2 eV

Electron Configuration

Orbital Occupancy

[He] 2s2 2p2

[He] represents the closed-shell electron configuration of helium

Orbital Filling Order

[He] 2s2 2p2

[He] represents the closed-shell electron configuration of helium

Term Symbol

3P0

see expanded configuration ...

Clementi-Raimondi Effective Nuclear Charge

1s

Orbital Exponent

5.6727

ζ

Principle Quantum Number

1

n

Effective Nuclear Charge

5.6727

Zeff = ζ × n

2s

Orbital Exponent

1.6083

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

3.2166

Zeff = ζ × n

2p

Orbital Exponent

1.5679

ζ

Principle Quantum Number

2

n

Effective Nuclear Charge

3.1358

Zeff = ζ × n

Screening Percentage

45.8%

Fluorescence Yields

ωK

0.0026

Quantity

Carbon Physical Properties

Notes

Density

diamond, solid, 25 °C

3.513 g/cm3

graphite

liquid, 4765.00 K

1.611 g/ml 

solid

300 K

2.26 g/cm3 

theoretical density for a perfect crystal

25 °C

2.200 g/cm3

Molar Mass

Rounded

12.011 g/mol

for regular calculations

Standard

12.0096 g/mol to 12.0116 g/mol

for precise calculations

Molar Volume

solid, 298 K, 1 atm

5.29 cm3/mol

diamond, solid, 298 K, 1 atm

3.42 cm3/mol

Physical Form

diamond

colorless cubic crystals

graphite

soft black hexagonal crystals

fullerene-C60

yellow needles or plates

fullerene-C70

red-brown solid

carbon black

fine black powder

Linear Thermal Expansion Coefficient

graphite

400 °C

28×10-6 K-1

c direction

0 °C

25×10-6 K-1

c direction

Speed of Sound

diamond, solid, 20 °C

longitudinal wave

18350 m/s

shear wave

 9200 m/s

graphite, solid, 293 K

 1470 m/s

calculated value

Specific Gravity

graphite, 68 °F, water at 4 °C (39.2 °F)

natural

2.0 to 2.25

synthetic

1.5 to 1.8 

carbon black, 68 °F, water at 4 °C (39.2 °F)

1.8 to 2.1 

Young's Modulus

diamond

980 GPa

Dielectric Constant

diamond, 300 K

103 Hz to 104 Hz, capacitance measurement

5.70 ± 0.05

103 Hz, Type I

5.87 ± 0.19

103 Hz, Type IIa

5.66 ± 0.04

graphite

 12 to 15 

carbon black

2.5 to 3.0

Electrical Resistivity

diamond, solid

Type I and most Type IIa

1×1018 Ohm m

Type IIb

1×103 Ohm m to 1×105 Ohm m

graphite, solid, 298.15 K

Electrographite (from petroleum coke)

7.6×10-6 Ohm m

Electrographite (from lampblack)

30.5×10-6 Ohm m

Pyrolytic graphite (ab direction - parallel to the basal planes)

2.5×10-6 Ohm m to 5.0×10-6 Ohm m

Photoelectric Work Function

4.81 eV

Thermionic Work Function

4.34 eV

Mineralogical Hardness

diamond

10.0

graphite

 0.5

Reflectivity

graphite, surface polished

0.5 μm

22%

0.6 μm

24%

0.8 μm

25%

see all 8 reflectivities ...

Isothermal Bulk Modulus

diamond, 300 K

545 GPa

Isothermal Compressibility

diamond, 300 K

0.00183 GPa-1

Gram Atomic Volume

5 cm3

Quantity

Carbon Atomic Interaction

Notes

Oxidation States

 4

more common

 3

less common

 2

less common

 1

less common

-1

less common

-2

less common

-3

less common

-4

more common

Pauling Electronegativity

2.55

Mulliken-Jaffe Electronegativity

hybridsp

2.99

hybridsp2

2.66

hybridsp3

2.48

Sanderson Electronegativity

2.746

Allred-Rochow Electronegativity

2.50

Configuration Energy

electron volt units

15.05 eV

Pauling units

 2.544  

Allen Electronegativity

2.544

Allred Electronegativity

oxidation state: 4

2.55

Boyd-Edgecombe Electronegativity

2.60

Ghosh-Gupta Electronegativity

6.2338 eV

Nagle Electronegativity

2.55

Pearson Absolute Electronegativity

6.27 eV

Smith Electronegativity

oxidation state: 4

2.3

Chemical Hardness

5.00 eV

Cohesive Energy

per mole

711 kJ/mol    

per atom

  7.37 eV/atom

Quantity

Carbon Thermodynamics

Notes

Melting Point

diamond, 125 kbar

4100 ± 200 K

graphite

1 kbar

4800 ± 200 K

100 atm

4200 K

hexagonal graphite, 9 kbar

4100 ± 100 K

Boiling Point

graphite, 1 atm

3825 °C

sublimes

Thermal Conductivity

diamond, solid

400 K, Type I

650 W/(m K)

extrapolated

300 K, Type I

895 W/(m K)

298.2 K, Type I

900 W/(m K)

273.2 K, Type I

994 W/(m K)

200 K, Type I

14.1×102 W/(m K)

400 K, Type IIa

15.4×102 W/(m K)

extrapolated

300 K, Type IIa

23.0×102 W/(m K)

298.2 K, Type IIa

23.2×102 W/(m K)

273.2 K, Type IIa

26.2×102 W/(m K)

200 K, Type IIa

40.3×102 W/(m K)

400 K, Type IIb

932 W/(m K)

extrapolated

300 K, Type IIb

13.5×102 W/(m K)

298.2 K, Type IIb

13.6×102 W/(m K)

273.2 K, Type IIb

15.2×102 W/(m K)

200 K, Type IIb

22.6×102 W/(m K)

see all 54 conductivities ...

Triple Point

graphite-liquid-vapor triple point

temperature

4800 ± 150 K

pressure

110 ± 20 bar

Critical Point

6743 K

Vapor Pressure

graphite

3635 °C

100 kPa

3299 °C

10 kPa

3016 °C

1 kPa

2775 °C

100 Pa

2566 °C

10 Pa

Isobaric Molar Heat Capacity

graphite, 298.15 K, 1 bar

8.517 J/(mol K)

diamond, 298.15 K, 1 bar

6.113 J/(mol K)

Isobaric Specific Heat Capacity

graphite, 298.15 K, 1 bar

0.709 J/(g K)

Electronic Heat Capacity Coefficient

graphite

0.014 mJ/(mol K2)

Debye Temperature

Low Temperature Limit ( 0 K )

2230 K

Room Temperature ( 298 K )

1550 K

diamond, Low Temperature Limit ( 0 K )

2250 K

graphite, Low Temperature Limit ( 0 K )

 413 K

Quantity

Carbon Identification

Notes

CAS Number

carbon black

1333-86-4

diamond

7782-40-3

fullerene-C60

99685-96-8

fullerene-C70

115383-22-7

graphite

7782-42-5

DOT Number

activated

1362

animal or vegetable origin

1361

ICSC Number

0702

carbon black

0471

RTECS Number

FF5250100

carbon black

FF5800000

UN Number

1361

carbon black

1361

Quantity

Carbon Atomic Size

Notes

Atomic Radius

77 pm

Orbital Radius

62.0 pm

Pyykkö Covalent Radius

single bond

75 pm

double bond

67 pm

triple bond

60 pm

Cordero Covalent Radius

sp3 hybridization

76 pm

sp2 hybridization

73 pm

sp hybridization

69 pm

Shannon-Prewitt Crystal Radius

ion charge: +4

coordination number: 3

 6 pm

coordination number: 4

29 pm

coordination number: 6

30 pm

Shannon-Prewitt Effective Ionic Radius

ion charge: +4

coordination number: 3

-8 pm

coordination number: 4

15 pm

coordination number: 6

16 pm

Pauling Empirical Crystal Radius

ion charge: +4

 15 pm

ion charge: -4

260 pm

Pauling Univalent Radius

ion charge: +1

 29 pm

ion charge: -1

414 pm

Batsanov Crystallographic Van Der Waals Radius

1.7×102 pm

Batsanov Equilibrium Van Der Waals Radius

196 pm

Bondi Van Der Waals Radius

170 pm

Pauling Van Der Waals Radius

170 pm

Slater Atomic-Ionic Radius

70 pm

Quantity

Carbon Crystal Structure

Notes

Allotropes

allotrope category

diamond

allotrope

cubic diamond

allotrope

hexagonal diamond

alternate name

lonsdaleite

allotrope category

graphite

allotrope

hexagonal graphite

alternate name

α-graphite

allotrope

rhombohedral graphite

alternate name

β-graphite

allotrope

turbostratic graphite

allotrope

chaoite

allotrope category

fullerenes

allotrope

fullerene-C60

symbol

C60

allotrope

fullerene-C70

symbol

C70

allotrope

carbon nanotubes

allotrope

carbon onions

allotrope

carbon fibers

allotrope

carbon foams

allotrope

graphene films

allotrope

carbon black

Nearest Neighbor Distance

300 K, 1 atm

154 pm

Atomic Concentration

300 K, 1 atm

17.6×1022 cm-3

Quantity

Carbon History

Notes

Discovery

date of discovery

prehistory

discoverer

unknown

location of discovery

unknown

Origin of Element Name

origin

carbo

origin description

mineral—Latin for coal or charcoal

Origin of Element Symbol

symbol: C

origin

carbon

origin description

element name

U.S. Towns Named After Elements

Carbon, Texas

Carbon, Wyoming

Quantity

Carbon Abundances

Notes

Earth's Crust

2.00×102 ppm

Earth's Mantle

100 ppm

primitive mantle

Earth's Core

0.20%

Bulk Earth

730 ppm

Ocean Water

28 ppm

River Water

1.2 ppm

U.S. Coal

63%

Human Body

16 kg

based on a 70 kg "reference man"

Human Bone

360×103 ppm

Human Hair

540×103 ppm

Human Kidney

670×103 ppm

Human Liver

670×103 ppm

Human Muscle

670×103 ppm

Human Nail

540×103 ppm

Bacteria

540×103 ppm

Ferns

450000 ppm

Universe

0.00036

relative to hydrogen = 1.00000

Solar System

1.01×107

number of atoms for every 106 atoms of silicon

Sun

8.52 ± 0.06

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Meteorites

7.40 ± 0.04

base 10 log of the number of atoms for every 1012 atoms of hydrogen

Halley's Comet

814 ± 165 atoms

number of atoms for every 100 atoms of magnesium

Quantity

Carbon Nomenclature

Notes

Element Names in Other Languages

French

carbone

German

Kohlenstoff

Italian

carbonio

Spanish

carbono

Portuguese

carbono

Anions or Anionic Substituent Groups

carbide (general)

C-, carbide(1-)

C4-, carbide(4-), methanetetraide

Cations or Cationic Substituent Groups

carbon (general)

C+, carbon(1+)

Ligands

carbido (general)

C-, carbido(1-)

C4-, carbido(4-), methanetetrayl, methanetetraido

Heteroatomic Anion

carbonate

'a' Term—Substitutive Nomenclature

carba

'y' Term—Chains and Rings Nomenclature

carby

References    (Click the button next to a value above to see complete citation information for that entry)

Albright, Thomas A., and Jeremy K. Burdett. Problems in Molecular Orbital Theory. New York: Oxford University Press, 1992.

Allen, Leland C. "Electronegativity Is the Average One-Electron Energy of the Valence-Shell Electrons in Ground-State Free Atoms." Journal of the American Chemical Society, volume 111, number 25, 1989, pp. 9003–9014. doi:10.1021/ja00207a003

Allen, Leland C. "Electronegativity Is the Average One-Electron Energy of the Valence-Shell Electrons in Ground-State Free Atoms." Journal of the American Chemical Society, volume 111, number 25, 1989, pp 9003–9014. doi:10.1021/ja00207a003

Allen, Matthew J., Vincent C. Tung, and Richard B. Kaner. "Honeycomb Carbon: A Review of Graphene." Chemical Reviews, volume 110, number 1, 2010, pp. 132–145. doi:10.1021/cr900070d

Allred, A. L. "Electronegativity Values from Thermochemical Data." Journal of Inorganic and Nuclear Chemistry, volume 17, number 3-4, 1961, pp. 215–221. doi:10.1016/0022-1902(61)80142-5

Allred, A. L., and E. G. Rochow. "A Scale of Electronegativity Based on Electrostatic Force." Journal of Inorganic and Nuclear Chemistry, volume 5, number 4, 1958, pp. 264–268. doi:10.1016/0022-1902(58)80003-2

Anders, Edward, and Nicolas Grevesse. "Abundances of the Elements: Meteoritic and Solar." Geochimica et Cosmochimica Acta, volume 53, number 1, 1989, pp. 197–214. doi:10.1016/0016-7037(89)90286-X

Andersen, T., H. K. Haugen, and H. Hotop. "Binding Energies in Atomic Negative Ions: III." Journal of Physical and Chemical Reference Data, volume 28, number 6, 1999, pp. 1511–1533.

Ball, David W. "Elemental Etymology: What's in a Name?" Journal of Chemical Education, volume 62, number 9, 1985, pp. 787–788. doi:10.1021/ed062p787

Barsan, Michael E., editor. NIOSH Pocket Guide to Chemical Hazards. Cincinnati, Ohio: NIOSH Publications, 2007.

Batsanov, S. S. "Van der Waals Radii of Elements." Inorganic Materials, volume 37, number 9, 2001, pp. 871–885. See abstract

Bondi, A. "Van der Waals Volumes and Radii." The Journal of Physical Chemistry, volume 68, number 3, 1964, pp. 441–451. doi:10.1021/j100785a001

Bowen, H. J. M. Environmental Chemistry of the Elements. London: Academic Press, Inc., 1979.

Boyd, Russell J., and Kenneth E. Edgecombe. "Atomic and Group Electronegativities from the Electron-Density Distributions of Molecules." Journal of the American Chemical Society, volume 110, number 13, 1988, pp 4182–4186. doi:10.1021/ja00221a014

Bratsch, Steven G. "Revised Mulliken Electronegativities: I. Calculation and Conversion to Pauling Units." Journal of Chemical Education, volume 65, number 1, 1988, pp. 34–41. doi:10.1021/ed065p34

Cardarelli, François. Materials Handbook: A Concise Desktop Reference, 2nd edition. London: Springer–Verlag, 2008.

Cardona, M., and L. Ley, editors. Photoemission in Solids I: General Principles. Berlin: Springer-Verlag, 1978.

Chauvin, Remi. "Explicit Periodic Trend of van der Waals Radii." The Journal of Physical Chemistry, volume 96, number 23, 1992, pp. 9194–9197. doi:10.1021/j100202a023

Clementi, E., and D. L. Raimondi. "Atomic Screening Constants from SCF Functions." Journal of Chemical Physics, volume 38, number 11, 1963, pp. 2686–2689. doi:10.1063/1.1733573

Cohen, E. Richard, David R. Lide, and George L. Trigg, editors. AlP Physics Desk Reference, 3rd edition. New York: Springer-Verlag New York, Inc., 2003.

Connelly, Neil G., Ture Damhus, Richard M. Hartshorn, and Alan T. Hutton. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge: RSC Publishing, 2005.

Cordero, Beatriz, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán, and Santiago Alvarez. "Covalent Radii Revisited." Dalton Transactions, number 21, 2008, pp 2832–2838. doi:10.1039/b801115j

Croswell, Ken. The Alchemy of the Heavens. New York: Anchor Books, 1995.

de Podesta, Michael. Understanding the Properties of Matter, 2nd edition. London: Taylor & Francis, 2002.

Donohue, Jerry. The Structures Of The Elements, 2nd edition. Malabar, Florida: Robert E. Krieger Publishing Company, 1974.

Dronskowski, Richard. Computational Chemistry of Solid State Materials. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

Ebbing, Darrell D., and Steven D. Gammon. General Chemistry, 8th edition. Boston, MA: Houghton Mifflin Company, 2005.

Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 2003.

Emsley, John. The Elements, 3rd edition. Oxford: Oxford University Press, 1998.

Falcao, Eduardo HL, and Fred Wudl. "Carbon allotropes: beyond graphite and diamond." Journal of Chemical Technology and Biotechnology, volume 82, number 6, 2007, pp. 524–531. doi:10.1002/jctb.1693

Firestone, Richard B. Table of Isotopes, 8th edition, volume 2. Edited by Virginia S. Shirley, with assistant editors Coral M. Baglin, S. Y. Frank Chu, and Jean Zipkin. New York: John Wiley & Sons, Inc., 1996.

Galasso, Francis S. Structure and Properties of Inorganic Solids. Oxford: Pergamon Press, 1970.

Ghosh, Dulal C., and Kartick Gupta. "A New Scale Of Electronegativity Of 54 Elements Of Periodic Table Based On Polarizability Of Atoms." Journal of Theoretical and Computational Chemistry, volume 5, number 4, 2006, pp. 895–911. doi:10.1142/S0219633606002726

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Oxford: Butterworth-Heinemann, 1997.

Greenwood, N. N., and A. Earnshaw. Chemistry of the Elements, 2nd edition. Burlington, MA: Butterworth-Heinemann, 1997.

Gwyn Williams. Electron Binding Energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on April 30, 2010.

Ho, C. Y., R. W. Powell, and P. E. Liley. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 3, supplement 1, 1974, pp. I–1 to I–796.

Horvath, A. L. "Critical Temperature of Elements and the Periodic System." Journal of Chemical Education, volume 50, number 5, 1973, pp. 335–336. doi:10.1021/ed050p335

Huheey, James E., Ellen A. Keiter, and Richard L Keiter. Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers, 1993.

International Labour Organization (ILO). International Chemical Safety Card for Carbon. http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc07/icsc0702.htm. Accessed on May 4, 2010.

International Labour Organization (ILO). International Chemical Safety Card for Carbon. http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc07/icsc0702.htm. Accessed on May 5, 2010.

International Labour Organization (ILO). International Chemical Safety Card for Carbon Black. http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc04/icsc0471.htm. Accessed on May 5, 2010.

International Labour Organization (ILO). International Chemical Safety Card for Carbon Black. http://www.ilo.org/legacy/english/protection/safework/cis/products/icsc/dtasht/_icsc04/icsc0471.htm. Accessed on May 4, 2010.

Jessberger, Elmar K., Alexander Christoforidis, and Jochen Kissel. "Aspects of the Major Element Composition of Halley's Dust." Nature, volume 332, number 21, 1988, pp. 691–695. doi:10.1038/332691a0

Kerley, Gerald I., and Lalit C. Chhabildas, editors. Multicomponent-Multiphase Equation of State for Carbon. SAND2001-2619, Sandia National Laboratories, September 2001.

Kittel, Charles. Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley & Sons, Inc, 2005.

Kittel, Charles. Introduction to Solid State Physics, 5th edition. New York: John Wiley & Sons, Inc, 1976.

Li, Wai-Kee, Gong-Du Zhou, and Thomas Mak. Advanced Structural Inorganic Chemistry. Oxford: Oxford University Press, 2008.

Liboff, Richard L. Introductory Quantum Mechanics, 3rd edition. Reading, MA: Addison Wesley Longman, Inc., 1998.

Lide, David R., editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008.

Madelung, Otfried, editor. Semiconductors — Basic Data, 2nd edition. Berlin: Springer–Verlag, 1996.

Mann, Joseph B., Terry L. Meek, and Leland C. Allen. "Configuration Energies of the Main Group Elements." Journal of the American Chemical Society, volume 122, number 12, 2000, pp. 2780–2783. doi:10.1021/ja992866e

Manuel, O., editor. Origin of Elements in the Solar System: Implications of Post-1957 Observations. New York: Kluwer Academic Publishers, 2000.

Martin, W. C. "Electronic Structure of the Elements." The European Physical Journal C — Particles and Fields, volume 15, number 1–4, 2000, pp. 78–79. doi:10.1007/BF02683401

McDonough, W. F. "Compositional Model for the Earth's Core." pp. 547–568 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Mechtly, Eugene A. "Properties of Materials." pp. 4–1 to 4–33 in Reference Data For Engineers: Radio, Electronics, Computer, and Communications. By Mac E. Van Valkenburg, edited by Wendy M. Middleton. Woburn, MA: Butterworth-Heinemann, 2002. doi:10.1016/B978-075067291-7/50006-6

Miessler, Gary L., and Donald A. Tarr. Inorganic Chemistry, 3rd edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Musella, M., C. Ronchi, M. Brykin, and M. Sheindlin. "The Molten State of Graphite: An Experimental Study." Journal of Applied Physics, volume 84, number 5, 1998, pp. 2530–2537. doi:10.1063/1.368414

Nagle, Jeffrey K. "Atomic Polarizability and Electronegativity." Journal of the American Chemical Society, volume 112, number 12, 1990, pp. 4741–4747. doi:10.1021/ja00168a019

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Carbon. http://www.cdc.gov/niosh/ipcsneng/neng0702.html. Accessed on May 5, 2010.

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Carbon. http://www.cdc.gov/niosh/ipcsneng/neng0702.html. Accessed on May 4, 2010.

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Carbon Black. http://www.cdc.gov/niosh/ipcsneng/neng0471.html. Accessed on May 5, 2010.

National Institute for Occupational Safety and Health (NIOSH). International Chemical Safety Card for Carbon Black. http://www.cdc.gov/niosh/ipcsneng/neng0471.html. Accessed on May 4, 2010.

National Institute for Occupational Safety and Health (NIOSH). The Registry of Toxic Effects of Chemical Substances for Carbon. http://www.cdc.gov/niosh-rtecs/ff501c34.html. Accessed on May 5, 2010.

National Institute for Occupational Safety and Health (NIOSH). The Registry of Toxic Effects of Chemical Substances for Carbon Black. http://www.cdc.gov/niosh-rtecs/ff588040.html. Accessed on May 5, 2010.

Orem, W. H., and R. B. Finkelman. "Coal Formation and Geochemistry." pp. 191–222 in Sediments, Diagenesis, and Sedimentary Rocks. Edited by Fred T. Mackenzie. Oxford: Elsevier Ltd., 2005.

Oxtoby, David W., H. P. Gillis, and Alan Campion. Principles of Modern Chemistry, 6th edition. Belmont, CA: Thomson Brooks/Cole, 2008.

Palme, H., and Hugh St. C. O'Neill. "Cosmochemical Estimates of Mantle Composition." pp. 1–38 in The Mantle and Core. Edited by Richard W. Carlson. Oxford: Elsevier Ltd., 2005.

Pauling, Linus. The Nature of the Chemical Bond, 3rd edition. Ithaca, NY: Cornell University Press, 1960.

Pearson, Ralph G. "Absolute Electronegativity and Hardness: Application to Inorganic Chemistry." Inorganic Chemistry, volume 27, number 4, 1988, pp 734–740. doi:10.1021/ic00277a030

Pekka Pyykkö. Self-Consistent, Year-2009 Covalent Radii. http://www.chem.helsinki.fi/~pyykko/Radii09.pdf. Accessed on November 20, 2010.

Pierson, Hugh O. Handbook of Carbon, Graphite, Diamond and Fullerenes. Park Ridge, NJ: Noyes Publications, 1993.

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Double-Bond Covalent Radii for Elements Li-E112." Chemistry - A European Journal, volume 15, number 46, 2009, pp. 12770–12779. doi:10.1002/chem.200901472

Pyykkö, Pekka, and Michiko Atsumi. "Molecular Single-Bond Covalent Radii for Elements 1-118." Chemistry - A European Journal, volume 15, number 1, 2009, pp. 186–197. doi:10.1002/chem.200800987

Pyykkö, Pekka, Sebastian Riedel, and Michael Patzschke. "Triple-Bond Covalent Radii." Chemistry - A European Journal, volume 11, number 12, 2005, pp. 3511–3520. doi:10.1002/chem.200401299

Rohrer, Gregory S. Structure and Bonding in Crystalline Materials. Cambridge: Cambridge University Press, 2001.

Samsonov, G. V., editor. Handbook of the Physicochemical Properties of the Elements. New York: Plenum Publishing Corporation, 1968.

Sanderson, R. T. Simple Inorganic Substances. Malabar, FL: Robert E. Krieger Publishing Co., Inc., 1989.

Sanderson, R. T. "Principles of Electronegativity: Part I. General Nature." Journal of Chemical Education, volume 65, number 2, 1988, pp. 112–118. doi:10.1021/ed065p112

Sanderson, R. T. Polar Covalence. New York: Academic Press, Inc., 1983.

Sansonetti, J. E., and W. C. Martin. "Handbook of Basic Atomic Spectroscopic Data." Journal Of Physical And Chemical Reference Data, volume 34, number 4, 2005, pp. 1559–2259. doi:10.1063/1.1800011

Savvatimskii, A. I. "Melting Point of Graphite and Liquid Carbon." Physics-Uspekhi, volume 46, number 12, 2003, pp. 1295–1303. doi:10.1070/PU2003v046n12ABEH001699

Scheer, Michael, Rene C. Bilodeau, Cicely A. Brodie, and Harold K. Haugen. "Systematic Study of the Stable States of C-, Si-, Ge-, and Sn- via Infrared Laser Spectroscopy." Physical Review A, volume 58, number 4, 1998, pp. 2844–2856. doi:10.1103/PhysRevA.58.2844

Shannon, R. D. "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides." Acta Crystallographica Section A, volume 32, number 5, 1976, pp. 751–767. doi:10.1107/S0567739476001551

Silbey, Robert J., Robert A. Alberty, and Moungi G. Bawendi. Physical Chemistry, 4th edition. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Singman, Charles N. "Atomic Volume and Allotropy of the Elements." Journal of Chemical Education, volume 61, number 2, 1984, pp. 137–142. doi:10.1021/ed061p137

Sinitskii, Alexander, and James M. Tour. "Graphene Electronics, Unzipped." IEEE Spectrum, volume 47, number 11, 2010, pp. 28–33.

Slater, J. C. "Atomic Radii in Crystals." The Journal of Chemical Physics, volume 41, number 10, 1964, pp. 3199–3204. doi:10.1063/1.1725697

Smith, Derek W. "Electronegativity in Two Dimensions: Reassessment and Resolution of the Pearson-Pauling Paradox." Journal of Chemical Education, volume 67, number 11, 1990, pp. 911–914. doi:10.1021/ed067p911

Smith, Derek W. Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990.

Soukhanov, Anne H., editor. The American Heritage Dictionary Of The English Language, 3rd edition. Boston: Houghton Mifflin Company, 1992.

Speight, James G. Perry's Standard Tables and Formulas for Chemical Engineers. New York: The McGraw-Hill Companies, Inc., 2003.

Stewart, G. R. "Measurement of low-temperature specific heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Stewart, G. R. "Measurement of Low-Temperature Specific Heat." Review of Scientific Instruments, volume 54, number 1, 1983, pp. 1–11. doi:10.1063/1.1137207

Tari, A. The Specific Heat of Matter at Low Temperatures. London: Imperial College Press, 2003.

U. S. Department of Transportation (DOT), Transport Canada (TC), Secretariat of Transport and Communications of Mexico (SCT), and Centro de Información Química para Emergencias (CIQUIME). 2008 Emergency Response Guidebook.

Vainshtein, Boris K., Vladimir M. Fridkin, and Vladimir L. Indenbom. Structure of Crystals, 2nd edition. Modern Crystallography 2. Edited by Boris K. Vainshtein, A. A. Chernov, and L. A. Shuvalov. Berlin: Springer-Verlag, 1995.

Voigt, H. H., editor. Landolt–Börnstein—Group VI Astronomy and Astrophysics. Berlin: Springer–Verlag, 1993.

Waber, J. T., and Don T. Cromer. "Orbital Radii of Atoms and Ions." Journal of Chemical Physics, volume 42, number 12, 1965, pp. 4116–4123. doi:10.1063/1.1695904

Wagman, Donald D., William H. Evans, Vivian B. Parker, Richard H. Schumm, Iva Halow, Sylvia M. Bailey, Kenneth L. Churney, and Ralph L. Nuttall. "Thermal Conductivity of the Elements: A Comprehensive Review." Journal of Physical and Chemical Reference Data, volume 11, supplement 2, 1982, pp. 2–1 to 2–392.

Waldron, Kimberley A., Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson. "Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends." Journal of Chemical Education, volume 78, number 5, 2001, pp. 635–639. doi:10.1021/ed078p635

Wieser, Michael E., and Tyler B. Coplen. "Atomic weights of the elements 2009 (IUPAC Technical Report)." Pure and Applied Chemistry, volume 83, number 2, 2011, pp. 359–396. doi:10.1351/PAC-REP-10-09-14

Yaws, Carl L. "Liquid Density of the Elements." Chemical Engineering, volume 114, number 12, 2007, pp. 44–46.

Yaws, Carl L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. Houston, TX: Gulf Publishing Company, 2005.

Young, K. F., and H. P. R. Frederikse. "Compilation of the Static Dielectric Constant of Inorganic Solids." Journal of Physical and Chemical Reference Data, volume 2, number 2, 1973, pp. 313–409.

Zefirov, Yu. V. "Comparative Analysis of Systems of van der Waals Radii." Crystallography Reports, volume 42, number 1, 1997, pp. 111–116.